VoiceDBC:
A semi-automatic tool
for writing speech
applications

Stephen Detrek Choularton
B.Sc., F.I.D.

A thesis submitted in partial fulfilment of the requitements for the
Honours Degree in Computer Science in the Division of Information
and Communication Sciences, Macquarie University

© 2002 Stephen Choularton

Abstract

One day, keyboards will only exist in museums. The long period of development to
computers enhanced with (functional) language understanding is still only just beginning
but recent advances have brought us to a point where the question of how to make it
easy to build good speech applications has become come to the fore. The advanced state
of text-to-speech modules contrasts starkly with the limits of speech recognition, which
is still in its infancy. Particular care is required to forget the industry hype, and instead
produce applications that can deliver what they are really able to promise.

This thesis provides a review of the existing work related to task-oriented dialogues, good
dialogue practice, dialogue phenomena, interfacing with databases and the use of tools in
the design of speech applications. It explores the role of good dialogue practice in
allowing us to achieve the central objective of producing speech applications that are
effective, easy to use and not prone to error. It looks at a wide range of characteristic
dialogue phenomena and examines how they can be exploited to support that central
objective. It reviews a number of tools that are already available to help write speech
applications.

The thesis develops the concept of dialogue design patterns and dialogue-task distance to
a point where a new paradigm can be adopted in the design of speech applications.
VoiceDBC, a semi-automatic tool for writing speech applications, is the practical
outcome of this work. It allows users to build speech applications quickly and effectively
and with due regard to the limits of speech recognition. Its design, and implementation
are covered in full together with pointers to further work both on the tool, and in the
area generally. VoiceDBC can be used to produce simple speech applications in minutes,
and handle all database connectivity issues. Tools such as VoiceDBC have their part to
play in ensuring that the promise of this field is realized.

Acknowledgements

In everything I do, I have to thank my wife, Elizabeth, for putting up with me and
(during the last few years) putting the bread on our table. Without her efforts there
would be no letters after my name.

I would like to thank Robert Dale, my supervisor, for keeping me on the straight and
narrow and teaching me the little I know about proper academic behavior. The idea of
using design patterns in this work was sparked by a throwaway comment of his. Without
it, little sense could be made of a semi-automatic tool like VoiceDBC.

Many other people have contributed to the fact that a wrinkly like me (I am 53 years old),
who never even matriculated, ended up doing honours. I would like to thank Macquarie
University for having a Jubilee Scheme so that wrinklies can access tertiary education
without having to matriculate. I would like to thank Carolyn Kennett, without whom I
know I would not have passed first year maths. I would like to thank Georgio
Martignoni who has provided me with the most practical of help in solving both
hardware and software problems and, perhaps more importantly, has given me his
friendship. I would like to thank Josef Meyer who always seemed to be there to pull me
out of the holes I dig myself into when coding in Perl.

I would like to thank Motorola, Inc. for awarding me the Motorola Language
Technology Program Honours Scholarship 2002. This practical support during my

honours’ year was most welcome.

For everyone else that I have failed to mention by name, thank you quite sincerely for
helping me get to this point.

Contents Page

Chapter 1 - VoiceDBC............cooiiiiiiiiiiiiii e 1
1.1 INErOAUCHON w.ooei 1
1.2 Task-oriented DIaAlOGUES.........ccciiviiiiiiiniiiiiic s 2
1.3 VOICEXML GAtEWAYS ..ovuiviiiiiiiiiciicr s 3
1.4 Aims, Relevance and Significance of the Project.......cccoovvviviviicccinccccicicinenns 4
1.4.1 ATINIS 1ottt 4
1.4.2 The Speech Application Taskccccoeiviviiiiiniiiiiiiiiiicces 5
1.43 REIEVANCE . s 5
1.5 ThESIS OVEIVIEW ..ot 6
Chapter 2 — Related WOrK ...t sesesseeas 7
2.1 INEEOAUCHION ..ttt 7
2.2 The APPLCAtion SPACE.....ccviviiiiiiiiicccc e 7
2.3 The LILELATULE c..cuviiiieciiie it 8
2.4 G00d Dialogue PractiCecvuiiuiiiiiciviiiiciiiiciniicieicessceessce s 38
2.4.1 TOEEOAUCHION .o 8
2.4.2 The Gricean MaximsScccccvevviniiininiiiiiic e 10
2.4.3 COMPIEXILY oo 10
244 Prompts And Re-prompts ... 10
2.4.5 VOCabUIALY ... 11
2.4.6 Lists and SUMMATIESvueueueiriieeieiriieeiereeeeieseeee e esesenens 11
2.4.7 Enforcing Good Dialogue PractiCe........coovuiiiviiiiciiiniiiiiiiiiicniicesecesiians 12
2.5 Building Speech APpLCAtions........ccviviiiiiiiiiiiiiiiic s 12
2.5.1 INEEOAUCHION ...t 12
252 ANALYSIS oo e 12
2.5.2.1 Research the Application Domain.........ccocceiviicininiicniiiicnccsceees 13
2522 Research the Data SOULCE ... 13
2.5.3 DIESIGN ...ttt s 13
2.5.3.1 Dialogue FIow Chartscocviiiiiiiiciciiiiiiiccccceeee e 13
2.5.3.2 Other Design ASPECtS......cuiiiiiiiiiiiiiiciiiciei s 14
254 Monitor and IMPIOVEcciuiiiiiiiiiiici s 14
2.6 Dialogue Phenomena.........cccccciiiiiiiiiiiccccc e 15
2.6.1 MiImicking StYLE ... 15
2.6.2 Talking to Your AUdiEnCecccevviiiiiiiiiiiiiiciiceeciesssens 15
2.6.3 LUN@ALIEY oot 15
2.6.4 TIME QUL 15
2.6.5 Turn TaKING ..o 16
2.6.6 EILPSIS wovucvveciiciiciici it 16
2.6.7 Indirect Speech ACtS. ..o 16
2.6.8 Stochastic Variation of OUtPUL......ccccvviviviiiviiiiiiccc s 16
2.6.9 AJACENCY PAILS oot 16
2.6.10 INSErtion SEQUENCES.....cccviviiiiiiiiiiiiicc s 17
2.6.11 Anaphoric References and Referring Expressions Generallycccocuvivinnnnne 17
2.6.12 Temporal Reference Resolution ... 17
2.6.13 DISTHIUENCIES....uiiiiiiiicicii e 18
2.6.14 Correction Of EATOLS. ..ot 18
2.6.15 ConfIifMAatioNS....ccvueviueiiieiiieiie e 18
2016 HEIP oo 19

2.7 Database Interfacing ISSUESccovuviviviviniiiiiiiiccccccc e 19

2.7.1 INtrOAUCHON ..ot s 19
2.7.2 Response GENEration ... s 19
2.7.3 Database UPdates ..o ssssesssssesens 20
2.7.4 Meta-Knowledge QUESHONS........coviuiuiiiiiieiiiciicci s 20
2.8 The Use Of Tools in the Design of Speech Applications..........ccccceveecucucucucieuennne 20
2.9 CONCIUSION. ...t 23
Chapter 3 — Dialogue Design Patterns............ccocoeiiiiiiininiiinininnccccccees 25
3.1 TOLEOAUCHION .ot es 25
3.2 Dialogue Design Patternis......ccovuiiuiiviiiiciiiiiciiiiiccicisicessccessisesesssssenenns 25
321 Design Patternis ..ot 25
322 FINAING PALIEINS c.cvvirieiiieiicicieecieecie et neaeaes 26
323 Using Dialogue Design Patterns in PractiCe......cooiiieccicccccciiiennnsines 26
3.3 Plane Timetable APPLCAtiON.......cccciiviiiiiiiiiiiiiiic s 28
3.3.1 INtrOdUCHON ..o s 28
3.3.2 The Basic Dialogue Design Pattern.......cccoceieiiiciiiiininininiinnnccccccaes 28
3.3.3 Using this dialogue design pattern elsewherecccococuviviviciviciiiciiiciniciice, 29
3.4 CONCIUSIONS ...t 29
Chapter 4 — The ImMPIementationccoceiieeininieueniceieeeenenseeeeseeseseeesessescsenens 31
4.1 INEEOAUCHON ..ttt es 31
4.2 The General ArchiteCture ..o 32
4.3 Implementing the Design Patternsccccovvviiiviniiciiniiciiccnccceecenes 33
4.4 Incorporating Good Dialogue PractiCe......oeuviieerieriiecieeniieericeeereceeeeeeenes 33
4.4.1 INEEOAUCHION e es 33
4.4.2 Forms in VOICeXML ..o s 34
4.4.3 Form SpecifiCation........cviiciiiiiiiiiiiiicci e 34
4.4.4 FIEIAS v 34
4.4.5 GIAMMATLS oo 36
4.4.6 BIOCKS oo 37
4.4.7 Application Wide Rules.......ccciiiiiiiiiiiiiiiiiiiccccsceiees 37
4.5 Coping with the Unrecognisablecccccciiiiiiiininininiiiiiccccccccces 38
4.5.1 INEEOAUCHION oot 38
4.5.2 Proper NAMES ..o 39
4.5.4 EMALS oo 39
4.6 Incorporating the Characteristic Dialogue Phenomenaccccoevvvvviniiiiinnnee. 39
4.0.1 INEEOAUCHON ..t 39
4.6.2 Talking to Your Audience ..o 40
4.6.3 LUN@ALIEY oot 40
4.6.4 TIME OULuiuiiiiiiiiiiici b 41
4.6.5 Turn TaKING ..o 41
4.6.6 EIEPSES vt 41
4.6.7 Indirect Speech ACts.....cviiiiiiiiiiiiiic e 41
4.6.8 AJACENCY PAILS . 41
4.6.9 INSEItiON SEQUENCES ...vvviiiiiiiiiii s 42
4.6.10 ANaphoric TEfErENCES ..o s 42
4.6.11 Temporal Reference Resolution........cccviviiiciviniiiniiiniiiiiiiccccccines 42
4.6.12 DISHIUCNCIES...ouiiiiiiiicii e 42
4.6.13 Correction Of ELLOrS ..o 42

4.6.14 CONTIINIAIONS cetteeveeeeeeeeeeeeeteeeeeeee et e eeteeeaeeeeaeessseessatesessesesessseessseessseessssesesnesssesnnne 43

4.0.15 HEIP oo 43
4.7 Database Interfacing ISSUESccccivviiiiiiiiiiiiiiicicece s 43
4.7.1 INtrOdUCHON .o s 43
4.7.2 The Terse APProach. ... 44
4.7.3 LLEXICOMS ettt 44
4.7.4 GIAMMALS ottt 44
4.8 CONCIUSIONS ... 44
Chapter 5 - Voice DBC in ACHOMN..........ccccciiiiiiiiicciccee e 45
5.1 INErOAUCHON ..ottt 45
5.2 The Restaurant Take-away Menu AppliCationcccccuevvviiieiviniciniviniiisiicenes 45
5.2.1 The Nature of the Restaurant Take-away Menu Application........cccceveevivnnnnes 45
522 Using VoiceDBC to Write the Dialogue........ccueuviiriciniiiiciniiiciccca 48
5.3 The Catalogue Sales APPLHCAION.......cciviiiiiiiiiiiiiiiiiiiice e 53
5.4 CONCIUSIONS ..ot 53
Chapter 6 — CONCIUSIONSccooviiiiiiiiiic e 54
6.1 OULCOMES .ottt 54
0.2 Dialogue Design Patterns.......cvuviiiiiiiiiiciiiiiciiicciceciescessssesssceenns 54
0.3 A Visual Front End for VoiceDBC......c.coiciiviiiiiiceceeceeeceeeeceneee 55
6.4 Expanding the Library of Templates........cceviererriieueiniierenrieenereeenenseeesenseeees 55
0.5 Implementing Database Connections to Other DBMS’s.......ccccovviivniiivninnnnns 55
0.6 Completing the Work on Incorporating Good Dialogue

Practice and Dialogue Phenomena ..o 55
0.7 CONCIUSIONS ..o 56
REfEIENCES ... e 57
Appendix I CODIAL: the guidelines for cooperative dialogue............c.ccccoeururunnce. 61
Appendix IT — The VoiceDBC Tutorialccccooeiiiiiiiiiiniiiiiiicceines 63

Vi

List of Figures

Figure 1
Figure 2
Figure 3

Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Figure 25

Voice XML document

Typical architecture for a 1V oiceXML. application

Scope of the work involved in writing a voice application
that accesses a database

Top voice applications today

A screen print of the main Audium interface

A screen print of the main CSLU interface

A sereen print of the main Suede interface

A sereen print of the main 1 voiceGenie IDE interface

A dialogne taxonomy

The basic design pattern for a plane timetable application

V0iceDBC, the opening screen

V0iceDBC revealing its multi-document text editor

Approaches for separating interfaces from code

A Mixed Initiative Form

An ABNF Grammar

The Mixed Initiative Form

The Offer Form

The Confirmation Form

The Review the Data Generally Form from the New
Project Wizard

The Review ‘courses’ Form from the New Project Wizard

The Lexicalise ‘courses’ Form from the New Project Wizard

The Transform courses’ Form from the New Project Wizard

The Review ‘price’ Form from the New Project Wizard

The Choose the Data To Be Offered Form from the New
Project Wizard

The final documents being displayed by 1 0ice DBC

vii

Y

49
50
50
51
51

52
53

The CD Accompanying this Thesis

In keeping with the modern trend a CD accompanies this thesis (fixed to the back
cover). It contains a text file holding the code for VoiceDBC.pl (the main part of the
program for this application) together with a working, compiled version of VoiceDBC.
As is standard practice the CD contains a readme.txt which is reproduced below:

Readme.txt:
Welcome to VoiceDBC. This version requires Windows.

To load VoiceDBC you should drag the entire directory VoiceDBC_V1
from the CD and drop it onto your C drive.

Once completed all you have to do to run VoiceDBC is open C:\VoiceDBC_V1

with Windows Explorer and double click on voicedbc.exe or type
c:\VoiceDBC_V1\voicedbc at the command line.

VoiceDBC was developed on a computer with screen settings of 1024 x 864 and
views better on such larger settings.

This version of VoiceDBC is set up to use Microsoft’s Access DMBS so you
have to have Microsoft Access on your computer for it to work fully. If you

do not you will still be able to see the applications it has already written which are
shipped along with it.

In order to make it easier to review this version without any training the New
Project Wizard has many fields set to default to the values that are used in the

Tutorial.

The uncompiled code for VoiceDBC can be found in the file VoiceDBC.pl
in the root directory of this CD.

Any problems please contact me, Stephen Choularton, at stephenc@ics.mq.edu.au or
stephen@bymouth.com

viii

Chapter 1 - VoiceDBC

11 Introduction

This project is concerned with the question of how to make it easy to build good speech
applications. Over the last few years, major advances have been made in the field of
speech technology. Text-to-speech' is now highly developed. Speech recognition, if
used carefully, can allow a computer to handle a wide range of utterances. Companies,
such as Microsoft and Apple, are providing Speech Engine modules that can be
integrated with their operating systems. Programming languages such as C++ and Visual
Basic now come with Speech API’s. Nuance, Speechworks, Carnegie-Mellon University
and others provide speech engine components and even full VoiceXML Gateways that
can be downloaded free for development purposes. Some are even open-source.

High level dialogue modeling languages such as VoiceXML (an international standard),
and SALT (an industry standard) have brought the field to a stage similar to that of the
Internet just after HTML and Perl CGI programming became common. Suddenly it was
possible for anyone (with a modicum of skill), to write the HTML to produce a website
and the Perl code that enabled it to talk to a database. Such applications make up a large
slice of the World Wide Web but making the task easier did nothing for the quality of
websites produced. Indeed many today still leave much to be desired with poor quality
interfaces that lack any intuitive feel (including difficulties in navigation, different
responses to the same actions and the like), give poor feedback, and use poor English.”
Very similar problems are being faced with speech applications.

Writing speech applications requires many unassociated skills in the fields of language
technology, internet technology, network technology and database technology. Some of
these skills are based upon a notion of good dialogue practice, which is still in its infancy. A
good website can be characterised as adopting good website practice and a working definition
for good dialogue practice is: Those strategies and tactics which, when adopted in the designing of a
dialogne, produce speech applications that are effective, easy to wuse and not prone to error. In
consequence, an important area of research for this project concerned the literature
relating to good dialogue practice. In turn, much of this relies on exploiting the
phenomena that characterise dialogues, such as turn taking, so a second important area
was the literature concerning dialogue phenomena.

Recent advances in support for the construction of speech applications have resulted in a
number of tools that allow a developer to build an application by visually arranging
components on a canvas, or by selecting alternatives from menus. However, none of
these applications provide support for building applications that adhere to good dialogue
practice. To do so applications must either deliver compliance with good dialogue
practice as a designed in feature or provide support similar to that provided by grammar-
checkers or spell-checkers in their respective fields. None of the applications reviewed,
for example, require developers to limit the length of prompts, produce correct referring
expressions, choose appropriate vocabularies, or give proper help. Nor do they provide
supporting modules relevant to common dialogue phenomena such as resolving
anaphoric or deictic temporal references, or other common anaphora.

Following research into many existing applications and the literature relating to good
dialogue practice, dialogue phenomena, development of speech applications and natural

! Where necessary these domain relevant expressions will be explained further in this chapter.
2 I am unable to comment on those written in other languages.

1

language interfaces with databases, I produced a tool; I6iceDBC’ aims to incorporate
good dialogue practice, contains modules to handle a chosen range of dialogue
phenomena and eases the problems of interfacing with databases.

In this chapter, we firstly look at task-oriented dialogues, the particular type of speech
applications relevant to us. In order to put the work in context, I chose VoiceXML
Gateways as the platforms for which VoiceDBC would write speech applications and, so
next, we look at VoiceXML Gateways. Then we look at the aims, relevance and
significance of this project, and finally give a thesis overview.

1.2 Task-oriented Dialogues

Speech applications are diverse. They can range from dictations systems (like the well-
established Dragon dictation system) to voice dialing modules on mobile phones, from
car navigation systems to horse race betting systems. The particular area of interest for
this project lies in speech applications that handle zask-oriented dialogues. The expression
task-oriented is becoming increasingly used in the literature to define the space that many
speech applications written today occupy. Balentine and Morgan [1999] define a task-
oriented dialogue as:

“A dialogue concerned with a specific object, aiming at a specific goal (such as tesolving a
problem or obtaining specific information). For example, dialogues concerned with flight
information, email access or transferring funds are task-oriented.”

One also finds the expressions ‘task-focussed nature’ in Beasley e a/ [2002], ‘task-
oriented’ in DISC [1999,2000]) and again in Mittendorf [2001] and elsewhere in the
literature. The following sample dialogue (a timetable query) is typical of what lies fairly
and squarely within our domain.

Computer: Good Morning, I can help you plan a flight. Where do you want to go?
Person: Sydney.

Computer: Where are you flying from?

Person: Darwin.

Computer: What day do you want to depart on?
Person: Thursday.

Computer: Please hold while I check the database.

Computer: OK, there is a flight that departs Sydney at 9:50 am and arrives Darwin
6:50 PM. Do you want a later flight?

Person: Yes.

Computer: OK, there is a flight that departs Sydney at 12:50 am and arrives Darwin
9:50 PM. Do you want a later flight?

Person: No.
Computer: Can I help you with any other enquiry?
Person: No.

Computer: I hope we can help you in the future. Goodbye.

I have concentrated exclusively on task-oriented dialogues as, given the current state of
development of this language technology, normally it is only these simple dialogues that
can be successfully handled by a computer. It is extremely difficult to write a speech
application where the developer does not know that a relatively simple pre-defined
outcome is required. The time will come when more profound levels of language

3 The DBC stands for database connectivity.

<?xm version = "1.0"7?>
<vxm version = "2.0">
<script>
function greeting() {
/* create a new date object */
var today = new Date();
/* figure out if is nmorning or not */
var hour = today. get Hours();
var response = "Good Mbrni ng"
if (hour > 11) {response "Good Afternoon";}
if (hour > 17) {response "Good Evening";}
response = response + ".";
return response;

</script>
<forne
<field name = "answer">
<pr onpt >
<val ue expr = "greeting()"/> Wuld you |ike
me to help you plan a flight?.
</ pronpt >
<gr ammar >
yes | no
</ gr ammar >
</field>
</ fornme
</ vxm >

Figure 1 — A 10ice XML document

understanding change this but for the moment I have made no attempts to move out of
the area.

1.3 VoiceXML Gateways

This project leads to the implementation of a tool that writes speech applications. Those
applications have to be run somewhere and I chose VoiceXML Gateways as the
platforms for which VoiceDBC would write these speech applications.

While there are some 250 million computers connected to the Internet, there are some
1.3 billion phones that are now capable of accessing the Internet through any voice
gateway. However, it is important not to confuse this use of the Internet with the
World Wide Web. It is possible to write applications that scrape text off web pages and
then render it to speech and to speech-enable web-surfing, but voice gateways are more
interested in crossing the bridge between telephony and computing, and in using the
Internet’s ability to allow applications to use remote resources. Normally, this will be by
way of accessing a remote database or by obtaining a dynamically created VoiceXML
document.

Voice gateways, (also known as voice portals) are bundles of software sitting on a
computer that can accept incoming phone calls. The computer can apply speech
recognition to incoming sound and, if it is a VoiceXML Gateway, pass the resultant text
to a VoiceXML Browser for interpretation. Resources can be commanded from the
Internet and the browser can produce text outputs that can then be rendered by a text-
to-speech module and sent back down the phone line. Other voice gateways might use
SALT, C++ or any one of a number of other programming languages to handle the
dialogue. In theory, voice gateways could allow access to the Internet to increase many
fold with access being as easy for those who are computer literate as for those who are

3

not. In addition, the facility can be of great help to those who are technologically or
physically deprived. The implications for the sight-impaired are obvious.

A significant development in the field is the highly level dialogue description language
called VoiceXML 2.0. It complies with XML’s strict guidelines and fills a similar role to
HTML on the ‘visual’ web. ECMAScript (a formal specification of the ‘visual’ web’s
javaScript) is used as the scripting language. Data items inside VoiceXML are
ECMAScript variables and can be manipulated with all the expected programming
control structures and assignment operations. An example of these interactions between
VoiceXML and ECMAScript is shown at Figure 1. This code results in the system
providing a greeting whose content depends on the time of day. If the person
responding says yes, the variable answer takes on the value yes (as allowed by the grammar
— yes | no).

A typical architecture for an application in this field might be as shown in Fjgure 2.
Anyone with the cotrect phone number (and possibly an access code) can dial in and
start talking to the voice portal. If the dialogue is self-contained, no access to the
Internet occurs, but, if some information or dynamic response is required, the voice
browser will use the submit action (based on the http protocol) in much the same way as
a visual browser would. The receiving server will fire up some code held inside its cgi-
bin which will either produce a dynamic response (send back a new VoiceXML
document for the browser to interpret), or access a database (on the server or more
remotely over the Internet), and then produce a dynamic response

Web Server
Remote Database

VolceXML

“Canlgeta i N il

flightto .”
Woice bt
fiaiass J YolcoXML

Figure 2 — A typical architecture for a 1V oice XML application

1.4 Aims, Relevance and Significance of the Project
141 Aims

This project is concerned with the question of how to make it easy to build good speech
applications. To do this, it:

* studies other applications for writing speech applications;
¢ collects and collates material on:
* good dialogue practice;

* dialogue phenomena;
* development of speech applications; and,
* natural language interfaces with databases.

Using this knowledge it then specifies, designs and implements an integrated
development environment — called VoiceDBC.

1.4.2 The Speech Application Task

Dialogue Design Stre am

L 4

1. Research | 2. Design call (| = Wrie the
Do main » Elow > YoicexML
Code

7. Test

Deploy
¢'D%b;a!;athe | 5. Write the | 6. Write the
. "| c6l Code "| DBl cCode

knowledge

v

Database Interface Design Stream

Figure 3 — Scope of the work involved in writing a voice application that accesses a database

The scope of work involved in writing voice applications that access databases is
summarised in Fzgure 3.

The developer must research the domain (§7p7). This involves looking at what is
done naturally in the domain and sometimes running simulations of dialogues.

At the same time, the developer must obtain the database meta-knowledge (Step
4) — the table names, the field names, the nature and scope of the data contained
therein.

Next a design call flow (§7 2) must be created, planning the course the dialogue
should take, accounting for any diversions from the predicted dialogue, and bearing
in mind the underlying form of the data.

Next the VoiceXML code (§7p 3) must be written.
Next the CGI code (57 5) must be written.

Next the DBI code (§7p 6) must be written.

Finally, the whole must be tested and deployed (7 7).

VoiceDBC aims to automate, as far as possible, all but S7p 7 — research the domain -
and S7p 7 — test and deploy.

1.4.3 Relevance

In the course of the next few years, voice portals will roll out across the world. Many
(perhaps most) of the applications they run will involve a database as a back end. The

easy production of voice applications capable of conforming to good dialogue practice
and operating in that environment is highly relevant.

1.4.4 Significance

It is very timely to review and collate the diverse work done by others on good dialogue
practice. Speech applications are at a point, where the inability of speech recognition to
deliver what the industry hype promises, requires a very considered response. In
addition, there has been very little serious input to the question of handling many of the
phenomena that characterise task-oriented dialogues. Of course, any tool that actually
delivers the promise of making it easy to produce good speech applications, will be of
immediate and practical use.

1.5 Thesis Overview

In the balance of this thesis, we will look at the work done on this project. Chapter 2
reviews the related work. This consists of a large number of existing applications which
fall within our application space, a very considerable literature at both an academic and
practitioner level, and finally, a number of existing software tools that assist developers to
write speech applications. Chapter 3 looks at dialogue design patterns. Perhaps one of
the most interesting concepts to emerge from this project, dialogue design patterns
allowed me to adopt a new paradigm, that avoids the user being required to undertake a
design call flow, (S7p 2 of Figure 3) and that cuts short the traditional application
development life-cycle. Chapter 4 goes into detail about the implementation. It explains
how dialogue design patterns are used in VoiceDBC, how good dialogue practice was
incorporated into VoiceDBC, and which of the characteristic dialogue phenomena
VoiceDBC supports. It explains the general approach to coping with writing the
VoiceXML code, obtaining the database meta-knowledge, writing the CGI code and
writing the DBI code (S#ps 3 to 6 of Figure 3.1 Chapter 5 looks at the actual use of
VoiceDBC to write an application (The Restaurant Take-away Menu Application). It looks at
the nature of this application, and then takes us through writing it using VoiceDBC,
concluding the work on S#eps 3 to 6 (of Figure 3). Finally, Chapter 6, the Conclusion, reviews
the outcomes of this project and gives pointers to future work.

Chapter 2 — Related Work

2.1 Introduction

This chapter discusses the related work leading up to this project. Firstly, Section 2.2
explores the application space, looking at the considerable number of applications which
have been produced in the academic and commercial domains. Next, it reviews the
relevant literature relating to good dialogue practice (Section 2.4), building speech
applications (Seczzon 2.5), dialogue phenomena (Section 2.6) and interfacing with databases
(Section 2.7). Then it reviews some of the existing tools that can be of use to developers
of speech applications (Sectzon 2.8). Finally, in the conclusions, it explains how all this
work leads to VoiceDBC.

2.2 The Application Space

As pointed out earlier, (at Section 1.2 above) speech applications are very diverse. The
particular area of interest to this project lies in speech applications that handle task-
oriented dialogues. Hood [2002] provides us with a list of existing spoken dialogue
systems, many of which fall within this domain. It covers some 62 different projects,
many of which have been developed experimentally by university departments. About
half of these fell clearly into our application space. It is clear that a very considerable
amount of work has been done; some ten (neatly a third) of the applications were to do
with travel, covering from flight reservations to train times; the balance were across a
wider range with, iuter alia, weather information, securities trading, restaurant
information, email access, traffic information and classified adverts represented.

The commercial field has also been active. Figure 4 reproduces a table from the 2001
VoiceXML Forum, listing the top commercial applications.

Top voice applications today

Weather information - 83
Email 1o vedcemall conversion = 73
Financial news—= 73
Sports results -7 73
Vaice controlied dialing = 73

Slock and fund share pricas 47
Traval schedulesftirmetabla =45
Local entertainment schedule—0
Horoscope -4
Travel directions 8 67
General news= 67
Business news =4t &7
Banking account data retrieval i 65
Traffic information =f 65
RestaarantMotel location -8 B4
Stock and fund transactions—: 63
Addness boakicontact information—2 5B
Stock and fund account retrieval 3 58
Directory access=1) 55
Blare location directions =2 55

222y

1 J

i i i i a1 1 1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Customars using voice for these appfications oday (%) Source: 2001 Voice XML Forum

Figure 4 — Top voice applications today

All of the commercial applications (other than voice controlled dialing) fall within the
application space of interest to this project. The subject matter of the commercial

7

projects shows more diversity than their academic counterparts but it would seem that
only the surface of what can be handled in the application space has been scratched.
This matter is further explored in Seczion 3.2 when we will look at a taxonomy for task-
oriented speech applications.

2.3 The Literature

The literature falls into two camps, material from practitioners and material from
academia. There is a considerable demand from industry and academia for up-to-date
information about VoiceXML and voice portals. It is not surprising that a number of
practitioners have written book to satisfy that interest (including Abbott [2002],
Andersson ef al. [2001], Beasley et al. [2002], Edgar [2001] and Sharma and Kunins
[2002]). Without going into great depth, these tend to review the relevant areas,
extending from an overview of the architecture of voice portals through, zuter alia, how to
write VoiceXML and EMCAScript code and CGI programming. They give the reader a
feel of what is possible and what is happening in the field. They tend to be short on
depth about such things as good dialogue practice. However, one practitioners’ book
that concentrated solely on dialogue, was that by Balentine and Morgan [1999]. It takes
the form of an extremely detailed style guide and should be read by anyone wanting to
work in this area.

The academic material ranges more widely and touches on a number of areas which, in
the end, I classified as good dialogue practice, building applications, characteristic
dialogue phenomena and database interfacing issues.

Two sources were websites and, in this field, information published only on the Internet
is of growing importance. In my review of the literature, I have used the four
classifications above to group common material. It may be that at some points the
boundaries between good dialogue practice and characteristic dialogue phenomena blurs.
This is because the former often endeavors to exploit the latter to achieve its objective of
producing speech applications that are effective, easy to use and not prone to error.

2.4 Good Dialogue Practice
2.4.1 Introduction

What does the literature have to say about good dialogue practice? Clearly, much of it is
of the view that good dialogue practice is important. Balentine and Morgan [1999],
Beasley [2002], DISC [1999, 2002], Fraser [1997], TRINDI [2001] and others, include
guidelines of one form or another. Different authors stress different aspects and some
even contradict each other; however, they tend to all agree that one is trying to maximize
the beneficial effects of several different factors:

* Conventions 'The natural desire of humans for consistency is often expressed in the
conventions they adopt. It is important that when faced with new applications, users
can rely on previous experience. Consistency in style, usage of words, cause and
effect (as appropriate) are expected in human-machine interfaces from the
arrangement of pedals in a car to graphical user interfaces on a computer screen. For
example, most people would expect a large red button on a machine to be an
emergency stop button simply because that is the common usage of such a button.
This desire for consistency extends to the common use of words from other
computer applications. As it happens, ‘help’ is a word that we might wish to avoid as
it is difficult for speech recognisers to recognise. However, the fact that it is so
commonly used to raise assistance in computer applications, leads to a seemingly
universal recommendation for it be used for the same purpose in speech applications.

8

One recent approach [Rosenfeld ¢z a/. 2001] has gone so far as to sacrifice any
pretence of natural language processing on the theory that it is better to have
complete consistency in the command language used across different applications.

* Control 1A second factor is the designer’s desire to allow the application to ‘control’
the nature of the user answers by exploiting characteristic dialogue phenomena.
These phenomena are dealt with in more detail below but briefly, as people in a
conversation tend to copy the style of conversation used by other participants, one
practice is to use simple direct prompts to encourage simple, direct replies. Do you
want to travel todayl lis much more likely to give rise to a [led INo answer than There is a
flight viall ong Uong at 1230 and another via Bangkok at 11130. Do _you want to travel today]
Another way of exercising control is to use timing and re-prompting to dampen
down corrective interruptions. Given that computers open windows of a limited
time duration for the purpose of recognition, miss timing can soon result in the
human talking when the window is closed and the computer never having a chance
to propetly hear the input.

* Recognisability A third factor is the designet’s the desire to encourage the types of
response that speech recognisers find most easy to decode. Speech recognisers do
not handle words in a manner in which human intuition finds easy. For example, as
Abbott [2002] points out, they find it easier to recognise ‘speak louder’ than ‘louder’.
This becomes easier to appreciate when one considers the speech recogniser is using
probability to decide which word is being said. A phonetic pattern that contains
more data will provide more information for matching purposes. Indeed, the most
falsely inserted (recognised when not spoken) and falsely detected (spoken but not
recognised) word is ‘six’, the shortest spoken digit in the language.

* [nitiative IA fourth factor that most sources appear to agree upon, is how to place the
initiative in the dialogue. The consensus is that the system should be enabled to take
general opening responses (at each stage of the dialogue) and then fall back on a
system led initiative to obtain any additional information required from the user. For
example, when trying to obtain flight information, the system should be able to take
what is useful out of an utterance like “I want to fly to Darwin on Thursday.”, and
only seek clarification of from where the speaker wants to depart. While this is not
really as flexible as the expression mixed-initiative implies it is often all that can be
achieved.

As Ballentine and Morgan [1999] point out, it is too eatly to set real standards for good
dialogue practice. There is no adequate collection of data to base it upon. However, it is
certainly not too early to start on the process of codification. The several factors
outlined above will influence the efforts of designers to produce useful approaches to
such matters as the handling of large amount of data, recovery from error and help with
an application. Many practices will arise unpredictably as designers explore the space that
speech applications can occupy. The successful ones will come to be adopted as normal
and, as they help a user move from one application to another, they will be expected by
the user.

In this section we will look at a number of areas which emerge from the literature as
being important to good dialogue practice. These range from the degree of task
complexity that task-oriented dialogues should aim to cope with, through appropriate
English style and vocabulary, and onto how we can deal with large data sets. Finally, the
section turns to how we might enforce good dialogue practice. First we look at the
Gricean Maxims.

2.4.2 The Gricean Maxims

No discussion of good dialogue practice in this field could take place without paying
respects to the Gricean Maxims. They are explicitly cited in many of the papers
reviewed. Grice [1975] looks at how a number of maxims can be used to interpret what
is implied by the utterances that occur in a co-operative conversation. It is assumed that
the speaker adheres to these maxims:

* Quantity
- Make your contribution as informative as is required (for the current purpose
of the exchange).
- Do not make your contribution more informative than is required.
* Quality — Try to make your contribution one that is true.
- Do not say what you believe to be false.
- Do not say that for which you lack adequate evidence.
* Relevance — Be Relevant.
* Manner — Be Perspicuous.
- Avoid obscurity of expression.
- Avoid ambiguity.
- Be brief (avoid unnecessary prolixity)
- Be orderly.

They may (almost) be considered a fifth factor acting upon good dialogue practice.
2.4.3 Complexity

Abbott [2002] makes the point that, in designing speech applications, it is better to
concentrate on the easier 80 per cent of requests, handling them simply and cost-
effectively, keeping response vocabulary simple and generic, and allowing users to fall
back onto keypad response or a human operator when significant problems arise. By
making prompts simple, one encourages simple replies. At the current stage of speech
recognition, a key feature is to encourage users to speak in a way a computer can
understand.

According to Glass [1999], Flammia [1998] contains statistics that concern the human
side of human-machine dialogues in the movie domain. The study showed that an
average dialogue consisted of 28 turns and user queries were not very long (over 80L] of
user utterances were fewer than 12 words and half, four or less) confirming that task-
oriented dialogues are often quite simple in any event..

2.4.4 Prompts And Re-prompts

Most sources (see for example Ballentine and Morgan [1999] at pages 42 onwards)
recommend the use of simple, direct prompts consisting in their eatlier parts of any
required instructions and ending with the ‘call to action’. When the system has to
prompt the user a second or subsequent time, (for want of recognition) it should reduce
the length of the prompt probably only using the ‘call to action’. Rolling two questions
into one (e Do you want to fly one Friday and will you want a car?) should be avoided.
They recommend that when prompting for Yes No answers, one should use the
interrogative form (e.g. “Is this correct?”). Include the verb and only use the imperative
form for error-recovery (eg “Please answer “Yes” or “No”.) With prompts generally,
use the interrogative for constrained numerical data (e.g. “How many shares?”) but avoid
it for unconstrained data (eg. “When were you born?” is better rendered as “What year
you were born? What month? What day?”). Further, one should drop the verb when the

10

interrogative is implied (e.g. “PIN number?”) They recommend that when one wants a
verbatim response, use a transitive verb like “say” (eg “Say “Sydney” or “Darwin””) and
don’t insert extra words after “Say”. When one wants data, use “state” to avoid the user
simply parroting back the direct object of the verb phrase. Don’t mix the two forms in
one prompt. Should one use “please” and “thank you”? Well, one is trying to maximize
the fact one can set the style of responses by the prompts and if one is after terse
responses, perhaps not.

2.4.5 Vocabulary

As Ballentine and Morgan [1999] points out, sometimes there are vocabularies already
associated with consumer technologies that will be readily understood and spoken by
users. These are not just the obvious ones like “help” being associated with computers.
Most users will, for example, know “cancel”, “enter” and “OK” from the Automatic-
Teller-Machine. This can, of course, conflict with an equally important requirement to
pick an utterance that a current speech recogniser will find easy to recognise. Generally,
this requirement means choosing multi-syllable words or phrases and avoiding noisy
words (containing unvoiced fricatives, ‘" and ‘s’) and low-energy words (containing
phonemes such as the nasal ‘m’ and ‘n’). Word pairs that have excessive syllable sharing,
like “Ice Cream” and “I Scream”, should also be avoided.

Sharma and Kunis [2002] makes a similar point, that some commonly accepted set of
user instructions will become the standard. Such a list of user instructions may come
sooner than expected. In order to enable the reuse of a uset’s knowledge between
different applications and devices, the European Telecommunications Standards Institute
has published a standardised, minimum generic set of spoken command vocabulary
(across five different languages) [ETSI 2002].

2.4.6 Lists and Summaties

Generally, large quantities of data are often presented in tables. Owing to the linear
nature of speech, these tables become lists, and long lists bring their own problems.
Human memory is short and one effective method offered by Ballentine and Morgan
[1999] to make list interruptible and to allow bi-directional navigation. “Stop”, “back-
up”, ete. can empower the user in respect to long lists.

Large quantities of data can also be summarised. When it comes to the presentation of
data, Walker ez a/. [1998] has some practical guidance from research. They look at how
the dialogue agent can solve its major problems: what information to communicate to a
hearer and how and when to communicate it. The agent may adopt a number of strategies
when reading messages and when summarising messages. The choices are:

Read - Read-First Summarise - Summarise-System
- Read-Choice-Prompt - Summarise-Choice
- Read-Summarise-Only - Summarise-Both

This is just the sort of problem, which VoiceDBC will often face. Walker’s references
(unsighted), explain that decision theoretic planning can be applied to the problem of
choosing among strategies by associating a utility with each choice and by positing that
agents should adhere to the Maximum Expected Utility Principal ([Kennedy and Raiffa
1976] and [Russell and Norvig 1995]). In addition, several reinforcement learning
algorithms, such as dynamic programming and Q-learning, specify a way to calculate
utility in these matters ([Bellman 1957],] Watkins 1989],[Sutton 1991] and [Barto e 4/
1995]) which Walker’s paper completes.

11

The outcomes are perhaps of greater interest to us than the actual mechanics; three
experiments were undertaken in which users completed three representative application
tasks that required them to access email messages. The results of these experiments were
to show that Read-First (that is, where the system commences by reading a message
without consent) has the highest user utility. The best summarising strategy (again
measured by utility) is the Summarise-System (where the system decides upon the criteria
by which to summarise).

Lists also bring with them ‘one anaphora’ management problems that are dealt with
turther below (at Section 2.6.17).

2.4 [Inforcing Good Dialogue Practice

The only really clear attempt to enforce good dialogue practice found in the literature was
a detailed methodology called CODIAL [DISC 1999, 2000]. This involves the recording
of Wizard of Oz (Wol*) simulations and their comparison with a checklist of salient
points. The results are used to improve the dialogue design and the process is then
applied iteratively. This work moves some way towards the ideas developed in this
project but does not, for example, look at exploiting the wide range of dialogue
phenomena in promoting good dialogue practice.

2.5 Building Speech Applications
2.5.1 Introduction

Beasley [2002], DISC [1999, 2000], Glass [1999], Hulstijn [2000] and Sharam [2002] all
suggest that the development of speech applications fit in quite naturally with a
commonly used iterative model (iteration within the waterfall model). This model allows
some freedom to use feedback between the stages of the development process and
expects considerable iteration within each stage. Readers are referred to Somerville [1989]
(at page 9) for a fuller description of this development model. The basic stages ate:

* Analysis — Normally associated with the production of some form of system
requirement specification.

* Design — Normally associated with the production of a formal design document.

* Implementation — Normally associated with the creation of the code.

* Monitor and improve — Normally associated with the application in the field

In this section, we will look at what the literature has to say about building speech
applications. First, we will look at the types of analysis that are most suitable for these
types of application; then the special flow charts used in design. The literature has
nothing very special to say about implementation, but the phase after a speech
application has been fielded is unusually important and is considered further.

2.5.2 Analysis

The analysis phase with a speech application concentrates on two areas. First we will
look at the work that is necessary on the application domain. For example:

* What sorts of things are said?
* How do dialogues run?

4 Wizard of Oz [Woll] simulations allow the pretence that a human is having a dialogue with a computer.
They are based upon the famous encounter with the Wizard of Oz where Dorothy and her entourage
believe they are talking to a monstrous wizard, when, in fact, an Omaha sideshowman is pulling the strings
of the ‘wizard’ from behind a screen.

12

Then we will look at the work to be done to enable the speech application to connect to
a back-end database.

2.5.2.1 Research the Application Domain

Normally, research into the application domain involves attempts to collect and analyse a
corpus of actual dialogues. Much of the literature in this field points to the problem that,
with speech applications, one is often not simply trying to automate an existing process.
Fraser [1997] and Glass [1999] analyse this aspect in detail. Fraser characterises three
types of approach in design of dialogues:

* Design by intuition — It is natural for people to think they can construct simple
dialogues by intuition. They do it every day, and classic contributors to the field like
Chomsky relied heavily on empiricist structuralism (that is, the discovery of the
meanings and patterns that already exist in dialogues).

* Design by observation — Exploring corpora of spoken language in the process of
designing a speech application.

* Design by simulation — Often, an application will be doing something that is only
similar to an existing activity (for example, phone banking is only similar to dealing
with a bank teller). In addition, generally only human-human dialogues exist. A
developer actually wishes to model a human-machine dialogue that does not yet exist
and for these reasons simulations can actually play a part in the analysis stage and,
where resources allow, formal Wol| simulations can be undertaken to reveal what
may occur in these proposed dialogues. Of course, as [DISC, 1999, 2000] points out,
most simple dialogues can be handled on an implement-test-and-revise basis — a
process falling very short of a Woll simulation.

2.5.2.2 Research the Data Source

Few applications can do anything useful without a data source and the literature relating
to this is covered in greater depth in the Section 2.7 below. Cleatly, the developer will
require to know the nature of the data source. By this I mean not only the size and
diversity of the data, but also the field names, the proprietary name of the database, the
path to the database, any security requirements, and any special data types used.

2.5.3 Design
2.5.3.1 Dialogue Flow Charts

There seems to be a common agreement that developing speech applications is a highly
iterative procedure, not lending itself to formal or waterfall techniques (DISC [1999,
2000], Glass [1999], Hulstij, [2000] and Sharam [2002] amongst others). However, a
formal design for the dialogue seems to be accepted as universal. This can take a number
of forms from simply writing the dialogue down to Universal-Modeling-Language.
However, dialogues are normally viewed as finite state machines and the most popular
approach is to use some sort of flow chart that captures the dialogue states and
transitions, the data to be obtained and the different dialogue routes to be navigated
based upon events during the dialogue. Generally, a modular approach is promoted
using ‘sub-dialogues’ to contain and manage the complexities of the overall flow. A sub-
dialogue would be called from a main dialogue flow to handle a discrete part of it (¢.g in a
travel dialogue the hotel booking and car hire sections might each be contained in their
own sub-dialogues). Creation of such dialogue flow charts allows the technique of
simulation to be used on the specified dialogues with a view to iterative improvement at
this early stage. In addition, it allows checklists to be applied (again at an early stage).

13

These checklists are salient points that can be used by the developer allowing repeated
verification of the application (or parts of it) for compliance with good dialogue practice.
Many sources include lists of good dialogue practice (see particularly Ballentine [
Morgan [1999]), but CODIAL is an actual checklist that is a feature of DISC.

The CODIAL tool consists of a set of rules in support of cooperative dialogue design
and a methodology for using them. There are 13 generic guidelines and 11 specific
guidelines that are reproduced in Appendix 1. The first nine come directly from the
Gricean Maxims [Grice 1975] of quality, quantity, relevance and manner. The next three
generic guidelines expand to address system specific matters: partner asymmetry, that is
making the user aware that the interlocutor is not a ‘normal’ partner, stopping the
generation of all sorts of miscommunications that the computer cannot possibly handle;
background knowledge, that is making sure the system is sensitive to the background
knowledge of the user; and, weta-communication, that is, appropriate system behaviour for
the purpose of clarification and repair of the dialogue. The last 11 (these are the specific
guidelines) give greater detail on the application of previously more generally stated
guidelines. The tool comes with instructions on its use as a design guide and its use for
diagnostic evaluation. The guidelines were developed against the background of a series
of Woll simulations. Essentially, one checks such simulations against the guidelines to
ensure compliance, amends the dialogue where errors are occurring and continues this
process in an iterative manner.

2.5.3.2 Other Design Aspects

If the developer is using a high-level dialogue specification language like VoiceXML,
design decisions will normally be constrained. The basic design of the dialogue will
already have been determined by the work done on the dialogue flow charts. However,
decisions will be required concerning the design of the back end. The major decision
concerns the programming language to be used, with Perl and Java as the main
contenders. The developer will have to consider how to access the application data. This
has a number of aspects:

* Will the data be available over the Internet, on the same hard drive, or through a
Local Area Network?

* Will ODBC, JDBC or some other middle-ware be used for the connection?

* Will Structured Query Language, or some other language, be used to interact with the
database?

Finally, the developer will have to provide facilities to convert any data encryptions into
natural language (‘bri” in the database has to end up as ‘Brisbane’ in the speech output).

It is possible to consider the incorporation of other components into VoiceXML
applications. Mittendorfer ez 2/ [2001] concern themselves entirely with the possibilities
of incorporating intelligent component technologies into VoiceXML based systems.
They review some items where natural language understanding might be desirable.
However, they indicate that integration of components is not seen as easy and this may
have stopped developers from trying to incorporate these cutting edge technologies into
the design of their VoiceXML applications.

2.5.4 Monitor and improve

Once fielded, a speech application will benefit from monitoring and deployment.
Ballentine and Morgan [1999], Mankoff [1999], and others deal with the post deployment
aspect of voice applications and its importance cannot be stressed enough. The literature

14

accepts continued monitoring and improvement after the fielding of an application to be
particularly important for speech application. So much so that 100L] recording of actual
use is often recommended together with the collection of a battery of statistics. Two of
these are: how many users ring-off before the application completes, and the number of
turns taken in each dialogue. This flows on from the fact that human-computer
dialogues are a new phenomenon and their true nature can only be discerned by
monitoring. This can lead onto a pro-active approach to the adjustment of the dialogue
to improve user satisfaction.

2.6 Dialogue Phenomena

Save for anaphora and referring expressions, (which are ‘hard core’ subjects for natural
language technology) not many papers concentrate exclusively on one dialogue
phenomenon. However, much interesting material is available.

2.6.1 Mimicking style

Mankoft [1999] points to the work of [loltan-Ford [1991] (not sighted), which indicates
that humans do tend to mimic a computer they are talking to. This is not surprising. We
know from our own experience that there is a tendency for the way people talk, that is,
their style of speaking and vocabulary, to converge to a common or dominant style
within any particular dialogue.

2.6.2 Talking to [lour Audience

In human conversation, a person adjusts the way they speak to suit the experience and
skills of the listener. This is mirrored in the Gricean Maxims [Grice 1975] and many of
the sources make the point that speech applications should incorporate this aspect.
Abbott [2002] points out that experienced users do not need too many or too long
prompts. Equally, inexperienced ones need extra guidance.

DISC [1999, 2000] goes into some detail on this aspect. Maintenance of proper histories
of the interactions with the system can help refine responses for different users.
However, even categories like novice and expert obscure the true nature of users by
obscuring the world knowledge that people bring to their use of a system. Expected users
might actually be domain or system experts who would require a third style of
conversation.

2.6.3 Linearity

As Ballentine and Morgan [1999] point out, speech (and dialogue) is sequential and
subject to any deficiencies in human memory. Human dialogues allow for exchanges to
remind a participant of what has already been said and speech applications must do the
same by allowing features like repeat.

2.6.4 Time Out

Human dialogues allow participants to suspend activity for a time to attend to other
matters. Abbott [2002] and Andersson ef /. [2001] both agree that speech application
should always offer this facility.

One kind of time out is the requirement to note something down during a conversation.
DISC [2000, 1999] points out that systems should be able to deliver information at a
slower rate when the user wishes to take notes, mimicking what humans would ordinarily

do.

15

2.6.5 Turn Taking

Turn taking is a most important aspect in dialogues between humans. Unfortunately for
language technologists, much of it is based upon non-verbal signals being sent from one
participant to another. The subtlety that exists with turn taking based simply upon
pausing (such as occurs during telephone conversations) can be clearly seen. Even the
slight delays in transmission that exist in long-distance calls can result in one person
talking over the other. Some of the literature touches upon the use of earcons such as
bells to mark the end of the systems turn ([DISC 1999, 2000] and [Yankelovich e7 al.
1995]) but there is no real agreement upon their effectiveness. As Abbott [2002] points
out, when there are no behavioral or visual clues, it is common for parties to lose track of
whose turn it is. When this occurs, a conversation rapidly degenerates into chaos.
Abbott suggests the insertion of safe points, (relatively high-level dialogue navigation
menus) which may be returned to by the user allowing them to re-establish where they
are and where they want to go. Both Abbott and Ballentine and Morgan [1999] suggest a
simple yes_Ino question can be used to stabilise a dialogue after repeated failures. Yes Ino
queries are amongst the most robust speech recognition interactions and are most
appropriate when attempting to recover ambiguities or user errors. The use of barge-in,
that is the person being able to talk over the systems prompt without having to wait for it
to finish, can accentuate turn taking problems although its advantages for experienced
user are so great that it is justified.

2.6.6 [llipsis

Mittendorfer e al. [2001] makes the point that users may well prefer natural language
elements like ellipses. However, he suggests that their inclusion in dialogues requires a
deep level of language understanding. My own work (Section 4.6.0 lindicates that they are
not so difficult to model into VoiceXML based dialogues.

2.6..] Indirect Speech Acts

A human says “It’s cold in here.” but means “Close the window!’. Stone [2000]
concentrates entirely on trying to solve (computationally) the interpretation of this type
of utterance where the listener has to draw such inferences. Indeed as he points out
speakers rely on the listener to do so. Stone does provide a computational approach to
interpreting such utterances that is based upon the use of modal logic programming and
possession of common knowledge by the participants in the conversation.

2.6..] Stochastic Variation of Output

The language generated by speech systems tends to be highly predictable. Exactly the
same phrases are used again and again. This lacks the naturalness of human speech that
often varies both the syntax and vocabulary used each time something is referred to.
Glass [1999] explores the use of stochastic language generation to add naturalness to the
output. The main drawback to this is the desire for consistency in interfaces by users.

2.6..] Adjacency Pairs

McKinlay e# al. [1993] point out that turn taking can rely upon the semantic contents of
the preceding turn. Adjacency pairs are a very simple example of this. These are pairs of
utterances which ‘go together’ because the second utterance is made in response to the
first. For example the utterance “Do you have the time of day?” or “Good Morning”
invites you to take the next turn.

16

2.6.1"] Insertion Sequences

Ramakrishnan ez a/. [2001] considers insertion sequences at length. If one considers
dialogues to take place in the form of adjacency pairs, then a break in that pattern
constitutes an insertion sequence. Following is an example of an out-of-turn insertion
sequence:

* (Question) Machine - What size pizza do you want?
* (Insertion) Person - A sausage one.

* (Pair to Insertion) Machine - OK, a sausage one.

* (Question) Machine — and what size?

They suggest that the VoiceXML form algorithm, specifically handles this type of
insertion and, if one keeps grammars active through a form, this is true.

They also touch briefly on two other forms of insertion. The first is for clarification
purposes. For example:

* (Question) Machine — What size pizza do you want?

* (Insertion Question) Human — What sizes are available?
* (Insertion Answer) Machine — Small, medium or large.

* (Answer) Human — Large.

The second is also a form of clarification. For example, L wman — Why don t you ask me the
Uestions in topping-crust-sige orderr] touches on making meta-information available to the
user; that is, the user is trying to find out what the system can do, and how it behaves
generally. In both cases the utterance must be caught, and dealt with by some other
mechanism than the standard VoiceXML form algorithm. One such method is to use
sub-dialogues that can be invoked by such patterns of words.

2.6.11 Anaphoric References and Referring [| xpressions Generally

Lappin and Leass [1994] wrote a seminal paper providing an algorithm for resolving
anaphora. It relied on a depth of language understanding that is beyond that being
achieved in the project’s chosen domain. Kennedy and Bogoraev [1996a, 1996b]
followed up with a re-implementation of the algorithm that was only based on shallow
tagging of the text.

Androutsopoulos ¢z al. [1994] also explore the problems anaphora can cause and looked
at a confirmatory tactic of the system echoing back the full discourse referent to the user
to ensure that pronominal anaphora are correctly resolved. The simple method of
keeping a list of discourse referents against which to resolve pronominal anaphora (using
gender and number features) is looked at. Indeed, Dahlback [1997] points out that in
human-computer dialogues, the anaphor-antecedent relation seems to be of a rather
simple kind, with the distance between them normally very small. The Lappin and Leass
[1994] approach was much too complicated; a very simple algorithm that basically
worked back from the pronoun and selected the first candidate which matched the
pronoun in number and person, and that did not violate selectional restrictions, proved
quite sufficient.

2.6.12 Temporal Reference Resolution

Reference to times and dates are common in dialogues. Ohrstrom-Sandgren ez a/. [1997]
provide a very powerful algorithm for resolving both anaphoric (e.g. “How is Tuesday,
January 30"?”, “How about 2?”) and deictic (e.g “Shall we go next Tuesday?”) temporal

17

references in dialogues. It was developed (with Defense Department money) for use by
the Artwork project [Weibe ez al, 1996, 1997] (neither sighted). Weibe e# a/. [1998] goes
on to expand and explain the algorithm in great detail. They use the idea of a temporal
unit that is able to capture the temporal information supplied in the dialogue. Interesting
these units capture periods of time with an instant having the same starting and ending
time. They then develop algorithms to resolve these temporal units back to specific
times and dates.

2.6.13 Disfluencies

Abbott [2002] points out that disfluency (‘um’, ‘ah’, correction on the fly and
abandonment of sentences halfway through) is a feature of human speech. He points
out that VoiceXML does not provide us with the power to catch these phenomena.
Indeed, some speech engines are tuned to throw away such utterances as ‘um’ leaving us
with no data input to act upon in any event. It would appear that the only viable
strategy, when using VoiceXML, is to fall back onto a style of dialogue, which procures
information item by item, when this problem arises.

2.6.14 Correction of [rrors

Mishearing and miss saying are a normal part of human conversation. This is no less true
in human-machine exchanges. Mankoff [1999] points out that the complexity of error-
recovery dialogues (citing [lajicek and Hewitt [1990]) and the amount gained for the
effort (citing Frankish, ez a/ [1992]) affects user satisfaction. In addition, work done by
Burkirsk and LalLomina [1995] indicates that big improvements are required before users
even notice a difference in error levels. All of this suggests there is a strong law of
diminishing returns in the area of error reduction. (Mankoff’s references have not been
sighted). However, Mankoff does suggest a number of options to help with finding and
correcting errors. Based upon some internal checking (like spell-checking or matching
days of the week to dates), the user can be offered a list of alternates. For example, if a
user says “Friday, 27 February” and the system is able to calculate that the 27 is a
Wednesday or the closest Friday is 1 March, the system might well say “The 27 February
is not a Friday. Do you mean Wednesday, 27 February or Friday, 1 March”. The natural
human strategy on error is to pause and correct, often without any clue that an error was
present. Llajicek and Hewitt confirm that users prefer to repeat their input at least once
before having to choose from a menu. Finally, just as in human conversations (and
computer application), an undollredo facility is really essential.

Spelling words is a normal human method of disambiguating badly heard words.
Ballentine and Morgan [1999] suggest using the military alphabet to resolve user input
but this whole area is quite difficult. Hilt and Waibel [1996] looked in detail at the
recognition of spelled words over the telephone. The main point for us to draw from
that paper is that simply trying to recognise spellings with current speech recognition
performance is not a good option. Errors can run at anything like one letter in ten unless
the speech recogniser is augmented with a suitable language model (in the Hilt and
Waibel case the language model was a list of the 15 million names that could be
recognised) and some quite powerful Al search techniques to be able to cope with such a
large space. Typically, these facilities are not available in a VoiceXML environment.

2.6.15 Confirmations

Confirmations play an important part in human dialogues. Many sources (including
Ballentine and Morgan [1999]) strongly recommend avoiding literal confirmations at each
stage of the dialogue. They suggest the repetition of the data in the next prompt. For

18

example, if the system ask the user on what day they wish to travel and the answer is
Thursday, the next prompt might be “OK, travelling on Thursday. What time?”
Confirmations of strings of digits are particularly problematic but, given that the chance
of an error in a string of numbers as a whole is a multiple of the chance of an error on
any one digit, it is probably not good practice to ask for strings of digits over four digits
long other than by using the keypad [Eisenzopf 2002].

Glass [1999] refers to statistics in Flammia [1998] that concern the human side of
human-machine dialogues in the movie domain. He shows that nearly half of users
dialogue turns were acknowledgements (e.g. “okay”, “alright”, “uh-huh”). This indicates
that even when talking to a machine humans still provided a large volume of
confirmatory sounds and it would be useful to reinforce recognition confidence by using
them.

2.6.16 Help

Help is a dialogue phenomenon even though we often think of it in the context of
computer applications. A special kind of clarification, the provision of help information
(‘Help’) allows a participant in a conversation to find out what can legitimately be
achieved. There is general agreement that Help should always be available. Cleatly, this
extended to those who wrote the specification for Voice XML 2.0; the word ‘help’ is one
of the few words that VoiceXML specifies must always be active in the grammar. This
means that the system will always recognise ‘help’ when uttered, allowing the
programmer to create a specific response. Many of the sources (Ballentine and Morgan
[1999], DISC [1999, 2000] and others) recommend that one should let the user know that
Help is always available, and how to get it (although by now users may be learning that
simply saying help is all that is needed). They suggest that Help is provided on as
focussed a basis as possible and that there is some mechanism to terminate the Help
mode by the user at any time; by this they mean that the user should be able to barge-in
over the Help being provided and tell the system to return to the main dialogue without
having to wait for the Help to finish. Sharna and Kunins [2002] suggest that a tutorial
should also be a characteristic of a good speech application.

2.] Database Interfacing Issues
2.1 Introduction

Much of the work done in this area was carried out in the pre-speech application era
when the hope was that (keyboard entry) natural language interfaces to databases would
extend structured query language interfaces for non-skilled users. As it turned out, the
graphical user interface won the day. However, the work deals directly with natural
language and it is still of direct relevance for speech applications. In this project I only
look at relational databases. Androutsopoulos e al. [1994] provides an excellent review
of the state of research in 1994 and I have relied heavily upon it. While interfacing with
databases is not considered main stream natural language technology territory by some
practitioners, it is interesting to note that Norton e a/ [1996] considers that a major
bottleneck in the development of practical spoken language applications is the interface
between the spoken language system and the back-end application.

2..2 Response Generation

Androutsopoulos ez al. [1994] point out that if one wishes to move beyond simply
printing the tuples returned from a database, one has to cope with the following
phenomena:

19

* Information contained in databases is very often encoded or abbreviated in some way
(e.g. ‘Brisbane’ may well be included as ‘b1t’).

* Typically, the system has no deep understanding of the questions. If the question is
nonsense, it may still be put to the database but no tuples will be returned. The
system should explain why the failure occurs rather than say that no results emerged.

* The user’s question may contain false presuppositions about the data or the world.
In this case the system must correct the presupposition. (eg. “Is there a 10:30 to
Adelaide?” L] “No” is not the correct answer if there are no flights to Adelaide at
all.)

* The user’s request may not express literally what s_he wants to know (e.g “Is there a
flight to Athens?” [1[] “Yes” is unlikely to be the full information the user wants.)

While the last three problems are quite difficult to solve, one approach to the first is to
have a response formatting module to expand information recovered from the database
in encoded form automatically (bri [IL] Brisbane).

Dale and Reiter [1990] specifically review the role of the Gricean Maxims in the
generation of referring expressions from original database type information. Fortunately,
the paper indicates that complete economy in expressions is not required. Humans often
produce referring expressions with a little redundancy in them but if one takes a task-
otiented approach, ‘appropriate’ referring expressions normally ‘fall out of it’. If, when
one designs methods to produce referring expressions, one creates an agenda of the
characteristics they should have, and then works your system towards them, then one will
(more or less) have conformed to the Gricean Maxims.

2..3 Database Updates

While most systems restrict themselves to obtaining information for the user (the select
structured query language statement), any general solution for database connectivity must
also support the other classical structured query language operations (update, delete and
insert) [Androutsopoulos ¢ al, 1994 at page 37]. Without such additional functionality it
is impossible to write applications that allow the user to conclude transactions or update
records.

2.4 Meta-Inowledge [] uestions

There are times when an ability to ask questions about the nature of the information in
the database is useful. Androutsopoulos ez al. [1994] refers to this type of query as a meta-
knowledge question. Empowering the user to ask this kind of question goes some way
to solving the three more difficult points referred to at Section 2.7.2 above.

2.[] The Use Of Tools in the Design of Speech Applications

I reviewed five tools that assist developers to produce speech applications: Audium 3, the
CSLU Toolkit, Suede, the Universal Speech Interface and VoiceGenie IDE.

Audium (www.audiumcorp.com) does something very interesting. Using a highly visual
interface, (shown at Figure 5) it abstracts the dialogue design into the form of a number
of states and transitions, allowing one to attach the necessary prompts, grammars and so
on to these states and transitions. This fits in nicely with the finite state machine view of
dialogues that is prevalent. At the click of a button, it produces the VoiceXML code.
Rational Rose and PowerBuilder abstract object-oriented design or database design in
much the same way and allow one to write Java or Oracle SQL at the click of a button.
Tools that can do this allow one to work at a higher level of abstraction and can assist in
improved design. Audium even assists with database connectivity.

20

The CSLU toolkit (http: [lcslu.cse.ogi.edu) (which is a non-VoiceXML tool) is rather
older but goes further in the visual vein. As can be seen from the screen-shot shown at
Figure 6. The use of the pallet together with a drag and drop technique has proved so
user friendly that school children are writing speech applications with it.

Suede (http: [guir.berkeley.eduliprojects_sude) is actually a Woll simulation tool but has
been included here as the interface shows the characteristic state and transition type
layout that seems to fit naturally with dialogues. (The interface is shown at Figure 7). It
allows one to construct a dialogue using a finite state machine approach and to add the
system prompts at each stage. It then runs using text-to-speech to render these prompts
to sound and records the user responses.

The Universal Speech Interface (‘USI’) (www.cs.cmu.edul [lusi Itro.html) (which is an
XML, but not a VoiceXML tool) sacrifices natural language for consistency in the
interface. The entire idea behind USI is to attempt to do for speech what Palm’s Graffiti
has done for mobile text entry and Macintosh’s universal “look and feel” did for
graphical user interfaces. It does not use a highly graphical interface but it writes simple
applications very quickly.

VoiceGenie IDE (www.voicegenie.com) is a basic VoiceXMII/Grammar editor. It
provides support for object attributes (which can be most useful given the complex
document object model behind VoiceXML), formatting, grammars and debugging. It
takes typed input but simulates execution and provides spoken output. The main
graphical user interface is shown at Figure 8. Such tools are very useful in increasing
programmers’ productivity and many readers will have used similar tools like the
Microsoft Visual Studio for Visual Basic or C++.

Select pre-built and custom Drag and drop Audium Elements
Audium Elements to create into the Workspace to develop
applications quickly applications without coding

o |

Manage audio personality and define
i a speech or touchtone user interface
. with the configuration pane

flocnzrpw

Figure 5 — A screen print of the main Audium interface.
21

tool palette |
Pl WL

define

activities

by placing

objects on |
b

‘Welcoms

ST

positive negative
v -

the canvas

&
Instructions
T

PV S

st

maa]

pat

[

Figure 6 — A screen print of the main CSLU interface

f& SUEDE Analysis - mail test

User 0 L4

Open | Save | Save As...

assign
sequence of

activities with

arrows

make

decisions
based on
users’ mput by
branching the
flow of activity

-|0] x|

ake itto today's meeting. || Delete message.

Message Deleted.

i

o)l o)

022

021

o |—nno|>

D

Welcome to mail.

Figure 7 — A screen print of the main Suede interface

22

[H voiceGenie Genie IDE - [Emails.vsxml] =[Ol x|
[File Edit Project Tools View Window Help (=1
[HEsH =R - | ZrE [t BRTT (600 RS| 7]
li=licli=l=]
x <7xml version = "1.077> S [7a0 Asicta ol sl x
: <vxml version = "2.0": | Attribute Valus [
[y Grammar Fies cord
-y WoiceHML Files enctipe
-+ [Dynamic_response. var L
[Emails. vl fetchaudio
Log_in sl fetchhint
oot e fetchtimeout
i maxage
[Select Yxm\ haitak
[V StringDirectary. veml methad
name log in
nameist
sIC Log in veml
sIcexpr
<form id = "main" >
<gsubdizlog name = "log in"” sre = "Log_in.wveml"/>
<subdialog name = "seslect" sre = "Select.vxwl"/>
& rat
<block> L
<goto next = "Log_out.vxul"/>
</hlocks>
4 ﬂ </ form> _|
* |Gy Preparing ta un application
? Running application: C\WoiceGenig\Fourth_dialoghE mailz. wxml.
| Tracing of the application has besn stopped by the user
= @ Process completed.
For Help, press F1 [[Ln 17, col 26 [[7
i#start |J M @&a) @ 0 > || Eete.] 3., | @vicos..| #lvoke... | E1401 4. Elveice... |[T]voice [EGEG 2 2zsm

Figure 8 — A screen print of the main 1V oiceGenie IDE interface

[Kolzer 1999] describes an unfinished tool being developed in the DaimlerChrysler
Research Laboratory that could be of considerable relevance to this project. Her work is
designed to produce a universal approach for specifying task-oriented dialogues. It uses
a number of concepts, one of the more important of which is to abstract dialogues into
turns, each of which is characterised as one of a set of dialogue acts (confirm, enquire,
etc). This is ideal for representation in a visual form. Increasing amounts of details are
then ‘hung’ onto these turns (such as the data types being dealt with eg string or time).
The implementation then creates transitions from each turn to any other turn (save those
that have been disallowed by the developer) and checks the consistency of the data being
handled. I have made inquiries to see if this work has been progressed but unfortunately
at the time of writing no news is yet to hand.

2.[] Conclusion

In this chapter we have looked at applications fielded by industry and academia (Section
2.2), at what the literature has to say on good dialogue practice (Section 2.4), building
speech applications (Section 2.5), and dialogue phenomena (Section 2.6), and at the use of
tools in the design of speech applications (Section 2.8). All of this related work leads us
up to the point of deciding upon what my application (VoiceDBC) should concentrate.

None of the reviewed tools supports good dialogue practice nor do they attempt to
model many of the characteristic dialogue phenomena. Only one provides some help in
understanding a database or mapping information into natural language. Interestingly
Kolzer [1999] does indicate that she would like to include ‘guidelines of dialogue
management’ and cites [Bernsen ef a/. 1998]. I have not sighted that work directly but it
does appear to be influential in the DISC [2000, 2001] work, which has a lot to say about
tools to enforce good dialogue practice.

23

It would appear that there is a growing demand for simple well-written speech
application [Rosenfeld ez a/. 2001] that can be produced cheaply. So it seemed to me the
course was clear. VoiceDBC should provide the user with a tool that can make it easy to
build good speech applications. It must support good dialogue practice and it must
model relevant dialogue phenomena. It must make it easy to review the data an
application has to handle, and to handle that data in practice. If required, it should forgo
the ability to handle complex applications in order to achieve these goals.

24

Chapter 3 — Dialogue Design Patterns
3.1 Introduction

In the last chapter we looked at the existing work related to this project and concluded
that I should build a tool (VoiceDBC) that can make it easy to build good speech
applications. It must support good dialogue practice and it must model relevant dialogue
phenomena. It must make it easy to review the data an application has to handle, and to
handle that data in practice. To do so constitutes a large undertaking, probably beyond
the ability of one person in one academic year. It was important to be able to simplify
the task.

During my research I had come across work on dialogne-task distance and 1 was generally
aware of design patterns. These two concepts, which are explained further below, allowed
me to adopt a radically different approach to the methodology to be used by a developer
when employing VoiceDBC in writing a speech application. VoiceDBC would come
with templates for various types of speech applications (e.g. a timetable template, a take-
away menu template, a ticket sale template, an email reader template, an information
providing template and so on). Although this approach restricts the usefulness of the
tool to those applications that fit a template, it makes it easy to write such an application
in minutes. In addition, over time, more templates can be added allowing VoiceDBC to
handle most of the application space.

This is a relatively short chapter but is central to how a tool like VoiceDBC can work. In
it, we will look at the two concepts introduced above and how they make it possible to
use a new paradigm in the development of speech applications. We will then work
through the Plane Timetable Application to explore the question of implementing dialogue
design patterns in practice, and then we will look other applications this dialogue pattern
can handle.

3.2 Dialogue Design Patterns
3.2.1 Design Patterns

As Grand [1998] explains, volumes have been written on design patterns, commencing
with two books by Alexander [1977, 1979], an architect. Alexander’s ideas were taken up
by the IT community and Gamma ¢# a/. [1994] produced a seminal book called Design
Patterns, which has become something of a bible in object-oriented circles. The essential
idea is that a problem can be taxonomised in a particular way and, if one can discern the
correct nature of the problem, one can reuse a previous design solution developed for a
problem of the same type. I decided to explore this style of thinking as a way to partition
the application space amongst different types of applications. I knew that these
dialogues all had to map into the one or more of the four basic structured query language
operations, and though this would constrain them even more. This should make
common patterns all the more likely to find.

The idea of dialogue design patterns did not solve a secondary problem. Some task-
oriented dialogues appear to be simple and some very complex. Patterns seemed to
capture groups of the simple dialogues but did not seem able to cope usefully with the
complex ones. During the research for this project, I came across work on dialogue
taxonomy by Dahlback [1997]. Its most important feature, in the context of this project,
is to bring out the concept of dialogue-task distance with respect to task-oriented dialogues.
All dialogues clothe an underlying non-linguistic task and Dahlback observed that there

25

appears to be a closer connection between task and dialogue in, for example, an advisory
dialogue than in an information retrieval dialogue. Dahlback gives this example:

“U to answer the question of when there are express trains to Stockholm within the next two
hours, in most cases there seems to be no need to know why the questioner needs to know the
answer.”

The point is, we do not need to understand the underlying non-linguistic task, so that
when the distance is greater, we can produce dialogues in which it is not required to
understand why users are asking their questions in order to produce useful outcomes.
Dialogue-task distance can be used to partition the space occupied by task-oriented
speech applications. On the distant side of the partitioning line are applications that do
not require any sophisticated feedback in the dialogue (such as timetables) and, on the
close side, applications that do (such as medical diagnostic applications). The latter type
of application really requires a very sophisticated design function. It cannot be reduced
to a pattern, or at least any pattern produced is probably going to be so specific that it
proves of little use for any other task-oriented dialogue.

3.2.2 Finding Patterns

At the start of the previous chapter, we looked at the application space and reviewed the
academic and commercial applications that have been developed. Many of them cluster
in small areas, like flight information, or on and around common themes, like news
information of various types. This led me to work on my own taxonomy for dialogues.
While it is accepted that taxonomies are essentially subjective methods of classification,
the work made it quite clear that there were many common dialogue patterns some with
as little difference as substituting ‘bus’ for ‘train’ to turn a train-timetable dialogue into a
bus-timetable dialogue. My taxonomy is produced below at Figure 9. 'The groupings
used sprang easily to mind as I wrote down the various applications. The idea of viewing
them as abstract classes (in the object-oriented sensed) followed almost immediately, as did
the further object-oriented concepts of inheritance and instantiation.

3.2.3 Using Dialogue Design Patterns in Practice

There are at least two approaches to the use of the dialogue design concept in practice.
Given the hierarchical nature of my taxonomy, one obvious approach is to start at the
top of the taxonomy and work down. On the other hand, as this concept leads to
instantiations (real applications), an obvious counterpart is to start with real applications
and work upwards.

The top-down approach involves the writing of a cascade of abstract classes that lead
gradually to actual instances of speech applications. One might start with an abstract
class that is simply a place marker for task-oriented dialogues. It might only carry the
attributes of a greeting and a parting comment; both are common to all these types of
dialogues. A further abstract class that involves the provision of information might
inherit this class. This implies some database connectivity; still at a quite abstract level.
A further abstract class might inherit this for timetable inquiries. This class might have
prototype methods concerning the traversal of data and attributes that recognised the
fact there is somewhere to leave from and somewhere to arrive. It might have methods
that recognise that the user will wish to home in on a particular item amongst the data —
one flight or one bus. Finally, all of this could be inherited by the actual instantiation of
an application. At each level, the classes take on more attributes and methods until
tinally, an actual speech application is forthcoming.

26

mirmen
s [
wonE EETurury
s [
LIIEA
1ompord mapy
sy ol
T

pHAERT
e @
T suogn aduo g SRR
i X,

meyamd
1o LT
SHOTMESHRLO

™) SR

doysragueayy
SO GoTSHRD)

X 2 ST) WIRLE

agry

“.—ﬁ_u..ﬂ.u.ﬂﬂ—ﬁnh-H.
“—nn_._u.u.ﬂ—ﬁﬂﬂ.
@ .
Sy

T o
qoo3s Romsiiy g

renstEar
fed o o

£ rmba
AT Aug Ay

fembue
HEAUE g

meyond

1myam AnEa

ay I ATs
1oy Swprreg

SHOQMESHR LD

ST NS

apey
e oo Sopeeg

| LFESA oW
e LIPLO

Laursim s, o

SHOQMESHRD:
Ao 1 taurajens Eee s

smZapy

“, SHOHEWELD FHT
Fo M ETh T

PAKI IO IR,

Figure 9 — A dialogne taxonomy

27

The bottom-up approach involves jumping straight in, writing several instances of speech
applications and exploring the opportunities for re-use of the designs, and the
components one finds. Given the lack of knowledge about dialogue design patterns, it
would have been difficult to complete the taxonomy and abstractions involved in the
first approach. In order to gain more knowledge, I chose the second approach, and two
instances were implemented:

* A plane timetable application
* A take-away menu ordering application

In order to explore the possibilities for re-use, two further applications were
implemented:

* The plane timetable pattern was used to produce an email reader.
* The take-away menu pattern was used to produce a shopping catalogue application.

3.3 Plane Timetable Application
3.3.1 Introduction

The task to be discharged by this dialogue is to allow a user to phone in, and find out
when there are flights from one capital city to another. In forming a design pattern I
bore in mind that:

* The system should be able to offer close flights, if the exact one a user wants does
not exist.

e It is more efficient to access a database once, and bring back a larger set of
information than is required, than to undertake repeated accesses as one homes in on
the flight time that is required.

3.3.2 The Basic Dialogue Design Pattern

2. Capture user’s
requirement

¥

1. Greeting

3. WHork through
the possibilities

- 4 Farewrell

Figure 10 — The basic dialogne design pattern for a plane timetable application

Clearly, the design pattern employs the ubiquitous ‘hallo’ and ‘goodbye’ of human
dialogues. The first task following the greeting is at Szage 2 — to capture the user’s
requirements. To do this, the developer must make some decisions. To ask for a precise
requirement has a number of problems. It accentuates the possibility of a useless reply

28

(e.g. question - ‘Is there a flight to Darwin from Sydney at 10:30?’, answer — ‘No’ when
there happens to be one at 10:35 or indeed there are, in fact, no direct flights to Darwin
from Sydney). The pattern I adopted was to ask for the minimum set of information
needed to procure a set of data from the database that is likely to contain the case the
user is looking for. In this case that is:

* Where are you going from?
* Where are you going to?
* What day do you want to travel on?

A further choice is required, if the set returned is large, what criteria will be used to focus
in on the users requirement? In different domains, the factor will be different. In this
domain, one might choose the departure time.

At Stage 3, the system has procured the data set and works though it with the user. There
is work [Walker e# 2/ 1998] that indicates users tend to be happier with a simple ‘start at
the beginning and work through the data’ approach for small data sets and if the set is
under seven that is what occurs. If the data set is over seven items, the application
should ask for clarification and range over the data until it find the closest match and
then start offering the data from that point. The user can loop either way on the data
and all the normal functionality of back, forward, first and last, so common on graphical
user interfaces is incorporated in the design. Indeed, if users become familiar with that
approach, it will be considerably easier to use dialogue design patterns across different
domains than otherwise; the language employed for this navigation task could be static
and not have to change from "Which city do you wish to depart from?’, to “Which suburb
do you wish to depart from?’ as one moved from planes to buses.

Finally, at S7age 4, the system says goodbye.
3.3.3 Using this dialogue design pattern elsewhere

It is easy to see how this dialogue design can be used for planes, buses, ferries and trains
but it is not so easy to see how it can be used for email reading. However, if we just
think of emails as being some text divided into a few important fields, such as the time of
transmission, the name of the sender, the subject matter of the email and its text, it is
easy to see how the four steps apply directly.

1. Greeting

2. Capture users requirement — does s_he want all the emails, the ones not previously
read, the important ones?

3. Work through the possibilities — if the set is large use some focus to manage it
otherwise start reading the first one.

4. Farewell
34 Conclusions

In this chapter we have looked at how the concept of dialogue-task distance helped me
divide the application space into those simpler applications which a tools such as
VoiceDBC could handle. We also looked at the pivotal role the concept of dialogue
design patterns plays in allowing VoiceDBC to build speech applications. Without being
able to categorise applications in some way it would be impossible make sense of the idea
of templates that can be used across similar applications. We also looked at the use of
dialogue design patterns in one particular application — The Plane Timetable Application —

29

and how that pattern could be re-used elsewhere. In the next chapter we will review the
actual implementation including what features were incorporated, and what was left out.

30

Chapter 4 — The Implementation
4.1 Introduction

This chapter concentrates on the actual implementation of VoiceDBC. First, we look at
the general architecture (Section 4.2). Then we look at implementing design patterns
(Section 4.3). Next, we work through the incorporation of good dialogue practice (Sectzon
4.4). This is followed by a section on some of the general problems that the current state
of speech recognition give rise to (Section 4.5). Finally, we look at dialogue phenomena
(Section 4.6) and database interfacing (Section 4.7). During the chapter, I cover features I
have included and also those that have been left out of VoiceDBC. Omissions arose for
two reasons:

* They concerned matters (areas of good dialogue practice or characteristic dialogue
phenomena) that did not arise in the speech applications I wrote.

* Having solved them in principal, they involved a considerable amount of coding
when time (which was at a premium) could be more interestingly spent exploring
new and challenging phenomena like handling long lists of data in dialogues.

I will flag these features as accurately as I can, as they constitute a fertile ground for
further work. The code written to implement VoiceDBC is contained on the CD that
accompanies this thesis.

E¥lvoicenB

File Edit _ Wimw Tral

Welcome to YoiceDBC Help |

Welcome to WoiceDlBC. You can create a new speech application
by clicking Mew, open ar exizting application by clicking Esisting or
Cloze this dialog bos.

=10] x|

[f pou wizh to stop VoiceD BE opening with thiz dialog box just click
on the check box below. You can always re-instate it by editing the
Lzer sethings.

[Check if you donot wish to see this opening dialog box again

e Exizting I

Figure 11 — V'0ice DBC, the opening screen

31

=10 x|

File Edit Wiew Tools Help

PfDiECt MEIF'IEIEIEF Mzin vl Login.wrml Insert wiml Lagouwst e il
|
aram =
| Speech Editar Save
P
E il <Txml wersion = "1.0"7= -
Wi =vixml wersion = "Z_o0O"=
zin vl
Login ezl
Im=ert wxml =form id = "main"®
_______ L&iﬁh;;;ﬁ-_“"---_ Zsubdialoyg nhame = "login" src = "Login.wv:
Zsubdialoyg name = "insert" sroc = "Insert.
=hlock=
“goto next = "Logout. wxml" S
“i/blocks

=/ form=
= frrxml =

Figure 12 — Voice DBC revealing its multi-document text editor
4.2 The General Architecture

The writing of speech applications, in our domain, involves the outputting of a number
of text files — most are in VoiceXML but some are grammar files and some Petl files
destined for the cgi-bin. With this end in mind, VoiceDBC contains a text editor (see
Figure 12 1and all these output files for a particular project are kept in a directory with the
same name as the project (eg fake awayl All the projects are kept in a sub-directory
called projects so the path to any particular set of documents might be [iprojects take away.
Deployment of these final files is left up to the user.

The templates are kept in a similar directory structure, but the facility has been added to
separate them by persona if this becomes desirable at some later date.

Task-oriented dialogues with a large dialogue-task distance lend themselves to abstraction
into two parts: data and templates. 'The data is that part associated with getting and
handling the information in the database. The templates are patterns of the dialogues as
reflected in partially abstracted project documents. Perl provides a number of modules
that can help us handle these aspects and I made extensive use of three modules CGI,
DBI and HTML::Template.

There are a number of approaches for separating interfaces from the code (see Figure 13
HTML::Template has proved a very popular one. Certainly it makes it easy to start
working with instances of the speech application and then to abstract those parts which
may change based upon the nature of the data to be processed. Given that I had decided
to learn more about dialogue design patterns by adopting this approach, it suited my
purposes admirably and allowed me to handle any difficult text /data constructs in the
main Perl code.

32

e S
Code/ R4 WML
Moddles [] Modules Modules -~ |
CGlpm Embperl HTML::Templota

Figure 13 — Approaches for separating interfaces from code’

4.3 Implementing the Design Patterns

First, I implement dialogue design patterns by writing them using traditional methods. In
my case, I made extensive use of the VoiceGenie IDE. Those parts of them that are
dynamic (that is, which change given the underlying nature of the data) are turned into
variables that can be filled from the main Perl code. Design Patterns therefore end up
being captured in two places — the basic interface in a template and the dynamic parts in
the main Perl code. After the first application was implemented it became obvious that
some parts of these dialogues are really universal, and some common templates for
handling opening and closing greeting were created.

At first, two instances were written:

* A plane timetable inquiry service.
* A (large menu) take away service.

In order to demonstrate that the patterns found in these applications could be used in
seemingly quite different domains, two further applications were written using the
original patterns:

* An email reader

* A catalogue sales application.

I have characterised these patterns ‘locate and review’ and ‘offer and select’. Writing the
initial instance of the pattern saw all the usual problems which are associated with coding
but the ‘clone’ was created mostly using a ‘find and replace’ technique common to text
editors. Of course, the changes in data could all be handled dynamically.

4.4 Incorporating Good Dialogue Practice
4.4.1 Introduction

It is probably useful to restate the definition of good dialogue practice introduced at the
beginning of this thesis:

Those strategies and tactics which, when adopted in the designing of a dialogne, produce speech
applications that are effective, easy to use and not prone to error.

These strategies and tactics come in two forms:

* Rules that apply across an application, such as the requirements for consistency of
manner and reactions, (e.g. don’t switch from a professional urban style of output to
broad Australian bush style in mid-dialogue or when the system does not hear a

> From page 141, Guelich ¢ al. (2000). CGI Programming with Perl. O’Reilly, CA.
33

uset’s utterance at one point of the dialogue, use the same words in response as are
used elsewhere else for this problem).

* Rules that apply to particular utterances such as these from Balentine and Morgan

[1999]:

* When prompting for Yes' No answers, use the interrogative form (e.g. “Is this
correct?”).

* Include the verb and only use the imperative form for error-recovery (e.g.
“Please answer “Yes” or “No”.)

I relied heavily on Balentine and Morgan in this latter area. With a tool such as
VoiceDBC (which produces finished code) support for good dialogue practice must be
designed in rather than offered as guidance to users. For the balance of this section we
will look at how this is achieved. It should be pointed out that a checklist for this area
was not prepared, and this would constitute a useful area for future work.

4.4.2 Forms in VoiceXML

VoiceXML offers two principal types of user interaction, the menu, and the form. The
menu is an analogue of the visual menu, where a list of options is offered to the user, and
a choice made. The form allows for a subtler interaction. Initially, a form allows a user
to make an utterance, which can contain one or more of the pieces of information the
system is looking for (e.g this sentence contains two of the three pieces of information a
system might be looking for: ‘Can I fly to Sydney on Tuesday?’); subsequently the form
allows the system to take the initiative in obtaining any other information it requires (e.g.
the final piece of information being looked for might be ‘Where are you departing
from?’). The form algorithm runs through any still unfilled fields one-by-one until the
required data is collected. It endeavours to free the dialogue from a slavish question-
answer format, and shortens the time required for an experienced user (one who knows
what information is required at that point) to navigate the dialogue.

4.4.3 Form Specification

Many sources consider the use of mixed initiative dialogue to be good dialogue practice
(|Balentine and Morgan 1999], [DISC 1999, 2000], [Glass [1999] and others). It is useful
to consider the basic nature of a form before elaborating it with all the various prompts,
re-prompts and help that will ultimately be required. At its most basic, a form consists of
some VoiceXML code (an example is shown at Figure 14), supported by a grammar
which helps the underlying speech engine recognise user utterances (an example is shown
at Figure 15.)

Good dialogue practice asked us to go well beyond these simple examples as will be
explained in Section 4.4.4 below. A VoiceXML form allows us to count the number of
times we have to prompt and re-prompt and make the system say different things on
each occasion. It allows us to create more meaningful utterances than the usually rather
banal platform defaults for non-recognition and no-input. It allows us to offer help.
Some of these actions (eg no-input) can be well handled at the application level but
many are directly related to the fiedd within the form where the bulk of the work is
performed in terms of human-machine interaction.

4.4.4 Fields

Within the form, it is the field that actually tries to capture data, and has to produce the
most sophisticated responses to comply with good dialogue practice. Prompts, no-

34

match and help must be covered for each field and must be relevant in their context.
None of the literature gives any guidance as to the number of different utterances

<?xm version = "1.0"7?>
<vxm version = "2.0">
<for mp
<granmar version = "application/x-abnf" src =
"reply.gram />
<initial name = "required_info">
<pronpt >
can i help you with your flight
requirenments?
</ pr onpt >
</initial>
<field nane = "fromcity">
<pronpt >
what city do you want to fly fronf?
</ pr onpt >
</field>
<field nane = "to city">
<pr onpt >
what city do you want to fly to?
</ pronpt >
</field>
</ fornp
</ vxm >

Figure 14 — A Mixed Initiative Form

required but a user will require a more significant type of help (an operator or returning
to some safe-point) if the system fails to cope with any utterance at any particular point
more than a few times. Many VoiceXML platforms simply give up after three attempts
(the alternate seems to be to loop forever), and so a sensible approach might be to offer
two or three styles of utterance followed up by a transfer to an operator. These
utterances should themselves be designed to promote good dialogue practice as follows:

* prompt 1 A prompt made up of any brief instructions followed by the call
to action.

* prompt 2 The call to action.

* prompt3 The call to action.

* no-match 1 Direct but terse guidance as to the correct form of reply, e.g. “Say

the name of the city.’, ‘Please just answer yes or no?’.

* no-match 2 A fuller explanation of what the system can understand, e.g “In
relation to your next utterance I am programmed to recognise
the following words, x, y and z.”

* no-match 3 “If you wish to be talk to a human just say ‘Operator’.” Or the
calling of a spelling sub-dialogue to disambiguate.

* helpl As per no-match 2
* help2 As per no-match 3.

It might seem strange to suggest that prompt 2 and 3 are the same but [Jajicek and
Hewitt [1990] confirm that users like the opportunity to repeat an answer prior to going
into more complex recovery routines. In addition, the mirroring of the no-match
response in help assumes that a person wanting help will be facing the same problems as
one who is saying the wrong things, therefore, individual crafting of additional help

35

responses is unnecessary. There is considerable guidance, particularly in Balentine and
Morgan, as to the correct tense and vocabulary to use in any particular case and it would
not be sensible to basically repeat large chunks of the literature directly (readers
interested in the detail can refer to Balentine [J Morgan [1999], Chapters 2 and 3 in
particular). To incorporate this material into VoiceDBC requires one to write the
templates with one eye on the guidance provided. Rigorous compliance should be
enforced with checklists. I wish to flag this elaboration of the field element. Providing
multiple responses at every stage of a dialogue, expands the code to be written in an
exponential fashion without making any great contribution to our understanding of good
dialogue practice. It is one of the items that has to await a period when deadlines are not
an issue.

4.4.5 Grammars

Generally, understanding how a field works is unclear without considering its grammar.
This defines the utterances that will be recognised at that point and can allocate semantic
values to those utterances or simply accept the recognised utterance as the value to be
used. There are a number of problems in deciding how to produce the grammars that
enable recognition of the uset’s utterances. Some considerations are simple. Generally,
we should choose multi-syllable words or phrases, and avoid noisy words (containing
unvoiced fricatives, ‘t’ and ‘s’) and low-energy words (containing phonemes such as the

#ABNF 1.0 UTF-8;
| anguage en;

node voi ce;
root $reply;

/***
reply: exanpl es

pl ease can i fly fromsydney to darwin
can i fly to darwin from sydney

***/

public $reply =
[$pl ease] [$can] ([Sfromecity | $to city] | [$to city |
$fromcity])
$pl ease = pl ease;
$can = can i fly;
$fromcity = fromsydney {sydney} | fromdarw n {darw n};

$to city = to sydney {sydney} | to darwin {darw n};

Figure 15 — An ABNF Grammar

nasal ‘m’ and ‘n’). In addition, we should avoid word pairs that have excessive syllable
sharing. All of this was dealt with in greater detail at Section 2.4.1 at Recognisability.
However, an issue of much greater complexity is how far should one go in trying to
recognise a wide range of user utterances. Here, there are two forces at work:

* the desire to accept arbitrary language inputs; and,
* the limitations of speech recognition.

36

There is a strong desire to be fully natural in the language a user can employ. After all,
this is natural language technology and those who decide to spend money on new
systems like to be persuaded that users will be able to say pretty much anything and the
system will recognise it. However, speech recognition still has many limitations. Most
systems use defined grammars. Key word spotting is an alternate approach. Under this
method one throws away intervening words and catches key words. For example, one
might look for city names in a string of utterances and throw away the context.
However, this has its own problems as without the context, it is often difficult to extract
semantic information and, in any event, key word spotting is not always supported on
current VoiceXML platforms.

Unless one specifies everything a person may say in a grammar, nothing will be
recognised at all. This subject is dealt with further below at Section 4.5 and Fraser’s
[1997] comments on dialogue design (he characterised three types of approach to
designing dialogues - design by intuition, design by observation and design by simulation,
see Section 2.5.2.1) apply equally to the design of grammars. How can one choose the
correct responses to recognise, by intuition, observation or simulation? One requires
perfect matches if the speech engine is to recognise. If one encourages a wide range of
user responses, what is to stop the user adding on an extra word? In itself that is quite
enough to make recognition fail and speech applications that are prone to fail are
contrary to good dialogue practice. One alternate, the one adopted in VoiceDBC, is to
encourage a terse form of exchange from the very beginning. This is designed to restrict
user utterances to only those necessary to convey the information required and is in
accordance with good dialogue practice at this time. Most of the literature agrees on this
point even though most of the commercial players like to put the opposite view forward.
Ballentine and Morgan goes even further pointing out, at page 214, that:

Sooner or later, colloquial and casual user speech causes problems. Such behaviors should
therefore be negatively reinforced] .

[For example;]| App: Is that correct?
User: “You betitis.”
App: For clarity, please reply with a simple 1) es 1 or[INo_|

4.4.6 Blocks

Blocks are sections of VoiceXML code that are executed by the VoiceXML interpreter.
Often, they are used to contain logic (ECMAScript or if-else constructs) but they can
contain audio, and such utterances must also conform to the requirements for prompts
in fields. Normally, such audio does not require any response but provides the user with
information or guidance.

4.4.] Application Wide Rules

Application wide rules tend to be designed to promote consistency. We have already
looked at them at Section 2.3.1 under Conventions. The use of style guides (and checking
for compliance with them) assists in creating consistency. This can be taken as far as the
creation of persona. An early version of VoiceDBC tried to grapple with the issues of
persona. However, we have already looked at the question of mimicking in dialogues
(Section 6.7). While persona may have their uses, one can imagine such personae as
‘Crocodile Dundee’ or even ‘Wog-Boy’ ° being popular. While Crocodile Dundee’s

¢ For any overseas readers, post war immigration into Australia turned Melbourne into the second largest
Greek city in the world. Wog-Boy is a theatrical characterisation of a young second lthird generation male
immigrant from that part of the world. His accent and vocabulary are quite outside ‘standard Australian’.

37

accent would probably not cause a speech recogniser trained on an Australian corpus
many problems, his natural choice of vocabulary is unlikely to be modeled (or indeed
known) to a typical speech application developer. Wog-Boy fails on both counts. Given
the limited gains and possible drawbacks of going so far as a persona, VoiceDBC did not
pursue this avenue. It relies on a single style that tries to model itself on ‘polite
professional Australian English’. However, a style guide has not yet been prepared, and
this would be a useful area for future work.

4.5 Coping with the Unrecognisable
4.5.1 Introduction

Why should we be interested in handling utterances that cannot be recognised? One
aspect of good dialogue practice is to produce speech applications that are not prone to
error. Recognition errors are the main problem area. Indeed there are classes of user
utterances we know will arise, but which cannot ever be recognised given the current
state of speech recognition. What are these and how do they arise?

Current speech recognisers cannot decide upon the meaning of sounds, with any degree
of reliability, without some form of language model to assist them. These models are
often defined as grammars. As sounds arrive at the system they are first analysed using
acoustic models (based on the phonemes that make up the spoken language). The
language models are then used to help decide what words the ‘recognised’ sounds make
up. As previously pointed out speech recognisers find it easier to recognise ‘speak
louder’ than ‘louder’ and simple words like ‘six” often cause problems [Abbott 2002].
This matching process is the reason behind this. There is more data in the longer
utterance and more chance for the essentially probabilistic speech recognition to work.
A simple grammar might be:

[Can [Could | I fly to [Darwin [] Sydney]

It covers such utterances as “Can I fly to Darwin?” and “Could I fly to Sydney?”. It is
clearly restrictive and would remain so even if every State Capital was added together
with ‘go” and ‘travel’ as alternate verbs, ‘we’ as an alternate pronoun, and any number of
alternate openings like ‘T want’, ‘we want’ and ‘please’.

How can we achieve a larger vocabulary that can be recognised; an open vocabulary?
One problem is that the more choices, the more complex it is simply to match the
utterance with the possibilities. Some of this arises from the fact that the search methods
are based on classical Al solutions and tend to blow out (computationally) so that the
requirement that speech applications operate in real-time can be affected. This is the
same sort of problem faced with computers playing chess. If you are going to search a
space fully, given that the space expands at some sort of exponentially function to its
depth, it is easy to run out of time or memory. Some of this arises from the fact that
speech recognition is probabilistically based and the more choices, the less chance of
hitting the right choice. However, there is an alternate to the simple type of grammar
shown above. To write a grammar for the whole language is generally accepted to be
unachievable (at this time) but a statistical approach can be taken. A large corpus of the
language can be studied and the chance of a word appearing after 7 others can be
calculated. These #-grams (as they are called) can be used to predict the words to be
recognised, and can substitute for a written grammar. By this method a (more) open
vocabulary can be recognised, but in a way this simply begs the question. To understand
arbitrary (but grammatically correct) strings of words, we have to parse them in an
exercise very similar to defining a grammar for a language model. If we accept that we

38

cannot do the former, how can we do the latter? This problem is exacerbated by the fact
that spoken English is very much less grammatical than written English.

In some ways, the understanding of arbitrary language inputs is the Holy Grail of
language technology. To tease out the semantics from utterances is the natural
destination of all this work, but for the moment, many practitioners believe this is an Al
complete problem, and will have to wait until all the problems to be solved in Al are
solved. Without accepting that proposition, it is certainly true that at this time, we must
look to shallower ways of acquiring our information. To see what can be of use, first let
us look at the sorts of arbitrary information we are likely to be presented with in our
limited task-oriented domain. This is mainly of the nature of proper names, addresses
and email messages.

4.5.2 Proper[] ames

Proper names are a continuing problem. Providing the user is not on a silent number, a
reverse look up of both name, and address is possible, and no self-respecting voice
gateway is likely to be without an API that allows the writers of speech applications to
obtain such information. However, that is not open to us. In any event, reverse look up
will only offer the possibility of asking a yes[lno question, and for those who are calling
from silent numbers, or away from home, the problem persists.

There are approaches that might be pursued involving large databases of common names
used as language models, but they are not very practical with VoiceXML. If (at this time)
one is forced to accept names over the phone, it will have to be by using the standard
human solution - ‘Could you spell that for me’. VoiceDBC should support this dialogue
phenomenon, and some of the coding has been undertaken. However, given current
quality of speech recognition, one is almost guaranteed to have to fall back onto some
SMS type of keypad input, and this work has been flagged for the future.

In practice, most applications can be expected to rely upon some sort of pre-registration,
probably over the visual Internet, and the use of simple four digit pin numbers to identify
users.

4.5.3 Addresses

With addresses, the solutions are similar to proper names, but the idea of spelling out an
address is probably too tedious to ever be implemented in practice. Capturing the user’s
utterance in a wav file and its subsequent interpretation by a human, is probably the only
viable option.

4.5.4 [Imails

With emails, the input is quite arbitrary and, one is forced to assume the content
confidential, so that human interpretation is not viable. The only option would appear to
be capturing the user’s utterance in a wave file. When attached to an email message that
is sent in reply, this method would normally fire up a wav player on the recipient’s
computer allowing them to listen to it. There are some size issues with wav files but I
understand that there are alternates that are more compressible, but still common enough
to fire up when clicked on as an email attachment.

4.6 Incorporating the Characteristic Dialogue Phenomena
4.6.1 Introduction

The ground covered in this section looks at the various dialogue phenomena that the
research revealed, and considers their incorporation into VoiceDBC. Two of the

39

headings that appeared in Chapter 2, when we looked at dialogue phenomena in the
Related Work have been omitted as they have been dealt with quite fully earlier in this
chapter. These sections are Mimicking Style and Stochastic 1 ariation of Output.

4.6.2 Talking to[lour Audience

This phenomenon has two aspects. First, users bring with them a body of knowledge.
Obviously a designer should try to model the system utterances to reflect this. In
designing utterances for a system such as VoiceDBC, I was compelled to adopt a ‘man
on the Clapham Omnibus’ approach. The nature of the ultimate user is not known at
the time a dialogue design is developed. However, there is a second aspect, concerned
with how experienced a user is in interacting with speech applications in general, and
with the speech application s_he is using in particular. In this aspect, much can be done
to tune the application to the user’s experience.

The first essential is that a database be kept that records significant system-user
interactions. Most applications will involve some sort of log-in procedure, and, even
those that do not, may be able to capture the user’s phone number, and base a history on
that identifying fact. Clearly, users with experience do not require the detail or length of
prompts that novices do. There should be at least two settings (novice and expert), and
prompts should be tuned to reflect this. VoiceXML allows conditions to be applied to
most items, and it is relatively easy to have:

Uprompt cond J’novice’ ! You log-in with a four digit pin number that was provided
at the time you registered for this service. Tell me your pin number now’ | .

Cprompt cond | ”expert”] What is your pin?

The classification of new users as novices is easy, but what criteria might be used to re-
classify them as expert? Perhaps the simplest method is for the system to ask the novice
user, after any period of frequent use, if they want to be re-classified, and then act on the
answer. The system should tell them they can revert to novice at any time just by saying
‘novice’. This aspect is flagged for future work.

4.6.3 Linearity

In order to cope with the deficiencies in human memory, human dialogues allow for
exchanges to remind a participant of what has already been said. Speech applications
should provide for a Repeat prompt, and this can be achieved by a piece of code along
the following lines in every field (having enabled the grammar to recognise ‘repeat’):

Ufilled modell”any’]
Uif cond 1”’repeat’]

Uscript]
[field name] [} undefined;
Ul scriptt]
[goto nextitem [[field name]!
CILf]
L filled!]

This will allow the user to go back to the prompt just spoken, and, when taken together
with an appropriate use of confirmations, goes some way towards solving this problem.
Having a form writing module in VoiceDBC could considerably ease the problems of the
considerable work created by the continual elaboration of form elements. Both a repeat
function, and a form writing module are flagged for future work.

40

4.6.4 Time Out

Speech applications should allow users to tell them (at any time) to stand by, and they
should also allow users (at any time) to ask them to speak more slowly (such slowing
down should probably continue to the end of the current system utterance). The former
desirable objective may not be appreciated by call-centres, and the like, who desire to
minimise line usage, but is certainly consistent with maximising user’s satisfaction. Both
features are flagged for future work.

4.6.5 Turn Taking

VoiceDBC has to cope with this phenomenon without any of the visual clues given
between humans to indicate whose turn it is. Of course, the ending of prompts with a
clear call to action (e.g. “‘What day do you want to fly on?’) does encourage proper turn
taking and this should be adopted as good dialogue practice. In addition, adopting the
policy of frequently using yes'Ino questions in the dialogue, tends to stabilise, it but in
practice, VoiceDBC has to provide ways for the user who is lost, to regain a proper
footing.

The most practical way for this to be achieved lies in the elaboration of the prompt, no-
input, no-match, and help utterances, and ensuring that they do give information on the
location, and role of the current turn in the context of the dialogue as a whole. In
addition, in complex dialogues, a facility to go back to the start of the current section
may also help, although all the dialogues I have been working with are too simple to
require this.

In the event of total failure, nothing should stop the user being able to call upon human
assistance if required. To achieve this, I can exploited the fact that the grammars of a
VoiceXML root documents are active even when the user is in other application
documents, so that the user can always interact with forms, links, and menus specified in
them. By providing a form which allows connection to a human upon the use of the
word ‘Operator’ (which is the [ETSI 2002] recommended utterance) in the root
document, and ensuring that users know it is available, this lifeline can always be at hand.

4.6.6 [llipses

This phenomenon should be borne in mind when writing prompts (or perhaps more
accurately re-prompts), and when designing grammars. That is, grammars should allow
the absence of those parts of sentences likely to be dropped by humans.

4.6.] Indirect Speech Acts

The only method available for us to cope with indirect speech acts lies in the grammars
we write. Any computational methods are quite beyond the processing available to us.
The designer must decide if ‘Can I fly to Darwin?’ really requires a yes_lno answer in the
context of the dialogue, and, if it really requires “There are 5 flights, the first one leaves at
] 7, they must write the speech application appropriately.

4.6..] Adjacency Pairs

We can exploit the fact that turn taking can be promoted by the semantic content of the
preceding turn. As explained in Seczion 4.4.4 above, ending prompts with a clear call to
action (eg ‘What day do you want to fly on?’) encourages proper turn taking. Clearly we
must exploit this phenomenon (eg questions and answers, greetings and responses) fully
in the design of system utterances.

41

4.6..] Insertion sequences

As Ramakrishnan ez a/. [2001] points out, the VoiceXML form algorithm provides some
support for the ‘out of order’ type of insertion. However, we are still left with the
clarification and meta-information type of insertion. Both of these tend to be Wh-
sentences (‘Howl] ¢, “Whyll ’, “Wherel! ., etc), and it is possible to catch some of them
by writing a suitable grammar. However, normally there is little one can do to answer
them as their arbitrary nature makes it difficult to design stock responses. The normal
response must therefore be to drive the human back to the responses the system is
geared up to accept. To do this, one can simply leave Wh-sentences as no-match, and
generate the normal system response, which is designed to push the user back on course.
However, if the data one is dealing with does have clarification material (e.g. a menu may
also contain a little description of what a dish consists of as well as the name of that dish)
one can catch these insertion sequences and offer the description as the system utterance.
This has been done in the Restaurant Take-away Menu Application. Requests for meta-
information are probably best dealt with through the help provided with the application.

4.6.1"] Anaphoric references

The whole area of referring expression is of considerable interest, but practically, the only
instance I needed to model in any detail is one anaphora. Many task-oriented dialogues
are involved with the provision of information, and this is often in the form of lists.
Humans have a strong tendency to use one anaphora to refer to this sort of data (eg
‘Give me the first one.”, “What about the second last one?’). By keeping an array of the
order in which information is offered by the system, we should be able to model this
phenomena. This remains future work.

Long distance pronominal anaphora, and other referring expressions in our types of
dialogues are rare. Suitable grammar, and prompt writing can handle most of them.

4.6.11 Temporal Reference Resolution

In our domain, anaphoric temporal reference can be handled by suitable grammar, and
prompt writing, but deictic references require a computational solution. Fortunately, this
is quite within the powers of ECMAScript, although it does rely on the computer’s clock,
so one can face time-zone issues. Deictic references cannot always be assumed to
produce the same result in different contexts. In a flight context ‘Can I fly on Tuesday.’
would almost inevitably mean next Tuesday. In an interrogation context ‘When did you
see John? — I saw him on Tuesday.” would mean last Tuesday. It may be possible to gain
clues from the tense of the verb, but in practice one can rely on a consistent result within
any single domain and model accordingly. None of the dialogues I modeled presented
this problem so that, while I have written ECMAScript capable of resolving diectic
temporal references, it has not been employed.

4.6.12 Disfluencies

Many speech engines try to catch disfluencies (‘um’, ‘ah’, etc.), and discard them. This
means that even if we wanted to try, and catch them, the data has ‘gone missing’. There
is little choice but to fall back onto a style of dialogue that procures information item by
item, if disfluencies cause a more general approach to fail.

4.6.13 Correction of [] rrors

The natural human strategy on error is to pause and correct, often without any clue that
an error was present. [ajicek and Hewitt [1990] (not sighted) confirm that users prefer to
repeat their input at least once before having to choose from a menu. Apparently, the

42

first reaction to an error should, therefore, be to allow the user a second chance.
Thereafter, if the system is in a position to offer a short list of correct suggestions it
should do so. None of the dialogues I implemented offered this opportunity. Spelling
words is a normal human method of disambiguating badly heard words, and we have
already dealt with it at Secion 4.5.2. Finally, just as in human conversations (and
computer applications), an undollredo facility is really essential. I have modeled this in
the Restaunrant Take-Away Menn Application but a more general facility to say ‘check’ or the
like at any point would be useful future work.

4.6.14 Confirmations

Confirmations play an important part in human dialogues but excessive confirmation
creates boring exchanges. Some matters require legal confirmation, and, today, it is best
to use touch-tone confirmation for these. In other cases, the introduction of the
captured data item into the next prompt is quite natural: system - “What is your namer’;
user - ‘John.’; system — ‘OK, John [l . An appropriate response can be made if the
grammar returns ‘wrong’ or ‘no’. We have already seen [Flammia 1998] that in some
simple dialogues, nearly half of users dialogue turns were acknowledgments (e.g. “okay”,
“alright”, “uh-huh”). In a perfect wotld, we would model these and somehow
manipulate a confidence factor relating to what has so far taken place. However, this
would require a large statistically based study of simple dialogues that is beyond the scope
of this project. We have modeled a reasonable level of confirmation, and the
opportunity to correct in the Restaurant Take-Away Menn Application — it does appear that
different patterns will require different confirmation treatments.

4.6.15 Help

We have already dealt with the provision of help at Seczion 4.4.4 above. A second aspect
is the provision of tutorials. For different types of applications, and VoiceDBC itself is
one, tutorials are essential to familiarise the user with the application. Speech
applications that fall at the distant end of the dialogue-task distance spectrum are too
simple to require tutorials.

4. Database Interfacing Issues
4.1 Introduction

Of course, VoiceDBC must simplify the problems of connecting to, analysing, and
handling databases, and the data they contain. At one end of our applications, there are
databases containing information in the form of strings, numbers, times, and so on. The
strings will often be abbreviations, and they, together with most of the other data, have
to be converted to a form suitable for ordinary text-to-speech processing. At the other
end of our applications are natural words that require to be converted back into forms
suitable for use in these databases. This gives us a framework upon which to base
lexicons (which are used to handle the former task) and grammars (which are used to
handle the latter task). So that VoiceDBC can be platform independent, I do not make
use of any of the standard VoiceXML data types, all of which are (surprisingly) platform
dependent. VoiceDBC contains graphical user interfaces that allow the user to contact
the database in question, to analyse the data, characterise its data type and create lexicons.
Currently the grammars are automatically constructed (using a terse approach — see
Section 4.7.2 below) from the lexical material.

43

4/.2 The Terse Approach

Elsewhere in this thesis, we have explored the problems that expanding the vocabulary
for an application causes in the form of increasing recognition errors. It is most unlikely,
in the field of simple task-oriented dialogues, that we will have the resources to carry out
a significant study of the vocabulary that is likely to be used. It is, therefore, best to
adopt a policy of trying to get the user to use the words we want to hear, and these are
the ones that arise from the nature of the data in the database, and the task at hand. This
implies keeping the system utterances short, and to the point (terse), and politely (but
firmly) reminding the user of what is allowed when they stray off course.

413 Lexicons

The approach used to create lexicons should be to review the data in each field in the
database as it presents itself to the speech application. A currency value in Access may
look like [718.00, but when recovered by a remote application presents itself as 18.0000.
The destination city in a flight schedule presents itself as bri in the database, and has to
be converted to Brisbane for the speech application. VoiceDBC provides a graphical
user interfaces that allow a visual inspection to be made and each item to be lexicalised,
that is mapped in a look up table (such as ‘bri [1[] Brisbane’) or mapped by a Perl
substitute function. It is useful if this transformation can be abstracted, and this can be
done for some data types like currencies, times and dates. Where I came across these in
the dialogues I implemented, I wrote functions to transform the data as it emerges from
the database into strings suitable for text-to-speech modules.

414 Grammars

Grammars serve two purposes in VoiceXML. They specify what inputs the application
will accept at each point in the dialogue, and in doing so they assists the speech
recognising module to decide what it has heard. They also allow the programmer to
allocate a return value, called the slot value, which can be different from the word(s)
recognised. For example the grammar: ‘[no [l nope [nine | Linol” will always return ‘no’
as a slot value available for the application. If no slot value is specified the default is to
the recognised word. The natural place to reverse lexicalisation is here, by using the
database form as the slot value, and the natural language form as the grammar. While 1
would not wish to use the grammar shown above, as it would encourage a wider range of
user utterances than desired, it does make a lot of sense to look at providing multiple
introductory, and trailing words so that recognition does not simply fail as a result of
someone saying “Can I fly?” rather than “Can I gor”. Of course the full range of
variations that are required can only come from a proper study of a relevant corpus so in
the VoiceDBC case, we must rely upon the intuition of the designer.

4.[] Conclusions

In this chapter we have looked at the actual implementation of VoiceDBC. First, we
looked at the general architecture (Sectzon 4.2). Then we looked at implementing design
patterns (Section 4.3). Next, we worked through the incorporation of good dialogue
practice (Section 4.4). A section followed this on some of the general problems that the
current state of speech recognition gives rise to (Seczion 4.5). Finally, we looked at
dialogue phenomena (Section 4.6) and database interfacing (Section 4.7). During the
chapter, I was careful to flag items for further work and these are fully listed at Section 6.6
in the final chapter, Conclusions. In the next chapter we will look at VoiceDBC in action.

Chapter 5 - VoiceDBC in Action

5.1 Introduction

In the last chapter we looked at the implementation of VoiceDBC, but in this chapter we
look at VoiceDBC in action. This will involve working through one application in detail
from a user’s point of view. It is rare to find simple solutions to complex problems, and
VoiceDBC (like PowerBuilder, Visual Basic, Delphi, VBuilder, ¢/ al) cannot be
understood simply by opening it and clicking on a few buttons. It is essential that the
user undertake the tutorials that accompany any of these applications to discover how
they work. VoiceDBC’s tutorial is reproduced as Appendix II and the reader is invited to
at least skim it, to see in greater detail, how an application is produced.

The choice of application (a restaurant take-away menu) may seem strange but a pizzu
ordering application has become ubiquitous; I wanted to do something more challenging
but along the same lines. An average Chinese restaurant menu is very much more
complicated than a typical fast food menu and I thought it would be suitable.

5.2 The Restaurant Take-away Menu Application

As was seen in Figure 17 at the start of the previous chapter, VoiceDBC opens with a
dialogue box, which allows the user to choose to create a new speech application or open
an existing one for further work. If the user chooses [ew, VoiceDBC leads them
through a wizard to capture the parameters essential to write the application. VoiceDBC
comes with a tutorial (written in HTML) which can be accessed by clicking on Help [I[]
Tutorial. The tutorial takes the user through the Restaurant Take-away Menu Application,
which is one of the dialogue design patterns that is shipped with VoiceDBC.

5.2.1 The [| ature of the Restaurant Take-away Menu Application

It is useful to consider the nature of this dialogue before looking at how a user of
VoiceDBC would use that tool to write it. Unfortunately, the standard VoiceXML form
algorithm did not provide the sophistication to offer any real mixed initiative style of
dialogue in this case so I split this function into two forms, the first handled the mixed
initiative (Figure 16_) and the second handled the offering of items dish by dish (Figure 17).

h 4

Do yoma kwooar o
what o
it
to order?
yes
k2

terne i the
foopnromnberof | 00— | confmmation
portions then

the ratne of Hnoldich
the dich

Figure 16 — The Mixed Initiative Form

45

WWhonald prona Hike

A . Fes Long
Tser_idiateee of huonar th e T
ce ke ctor process ®

h

ozt
1o
h 4
Thece are the
—W ccoumsess [
diche s,
]
[as Te quired) |
b 2 o are already
Ho g, et atthe end of
the corses,
i The kst itern
[as Te quire d] &
Firish Yo are already
atthe be gihming
P of the corses.
The first fermn
L J i

corfinmation ¢

Figure 17 — The Offer Form

There was a third form (Figure 18 to handle the quite complicated matter of
confirmation. As can be seen, the dialogue has been reduced largely to yes_no inputs
from the user. This is because trying to write a grammar to accept all the variations on
the typical contents of a (Chinese) restaurant is a nightmare. It is almost guaranteed not
to work. Our expert can place an order by using the expressions used in the menu
during the mixed initiative phase, but failing that, the only viable course is to reduce the
exchange to yes_no (or numbers of portions). The dialogue produces quite different
outcomes for the ‘expert’ or the ‘novice’ (defined here respectively as someone who
knows how to use the menu item names and someone who does not).

Expert Exchange:

Computer: Do you know what you want to order?

User: Yes.

Computer: Give me the items in the form number of portions and then the name of
the dish.

User: One Spring Roll, One Prawn Toast, One Salt and Pepper Calamari Rings,
One Peking Duck.

Computer: Now, I will read back your order. One Spring Roll [followed by a slight
pause to allow the user to say ‘wrong’ |

Computer: One Prawn Toast. [/ followed by a slight pause to allow the user to say
‘wrong’l]

46

Computer: One Salt and Pepper Calamari Rings. [followed by a slight pause to allow
the user to say ‘wrong’ |
Computer: One Peking Duck. [followed by a slight pause to allow the user to say

something |
Computer: OK, your order comes to [45.60. It will be ready for you to pick up in 30
minutes.
copditional
ow
yes
Do yona varanit. Hovar, Tarill
B o confion B readbuck pi| S
" o oTder. oI oTder.
1o frinished]
m%
h 2
Hovar ity
Wour order [L— portione do
i Zorder= [piond wrard
v
WWionald o
g like toadd
argthing?
. Uzer _indiatin Do ooy T
ram what you vwrant (4
to add? yes
Figure 18 — The Confirmation Form
Novice Exchange
Computer: Do you know what you want to order?
User: No.
Computer: Would you like an explanation of how the ordering process works?
User: Yes.
Computer: I will go through the menu dish by dish. If you say nothing, no or next, I

will go to the next dish. If you say any number, one through nine, I will
record the number of portions of the dish you want. If you say yes, I
assume you only want one portion. Dishes are arranged in courses, for
example starters first, soups next. If you want to skip to the next course
say ‘next course’. If you want to go backwards say ‘back up’. 1 will
continue to go backwards until you say next. If you want to skip
backwards a course say ‘last course’. Say finish to end and to have your
selection read back for confirmation.

Computer: These are the starter dishes. San Chow Bow with Prawns and Scallops.
UIfollowed by a slight pause to allow the user to say something |

Computer: San Chow Bow with Pork.

User: One.

Computer: Mixed Entree

a7

Usert:

Computer:

User:

Computer:

Usert:

Computer:

User:

Computer:

User:

Computer:

User:

Computer:
Computer:

Computer:

Usert:

Computer:

User:

Computer:

Computer:
Computer:

Computer:

User:

Computer:

User:

Computer:

User:
Computer
User:

Computer:

User:

Computer:

Usert:

Computer:

One.

Spring Rolls.

Next course.

These are the soup dishes: Short soup.

Next course.

These are the Salt and Pepper dishes. Salt and Pepper Calamari Rings.
Next.

Salt and Pepper Tofu.

Next.

Salt and Pepper Pork Chops.

One.

Salt and Pepper Prawns

[lfollowed by a slight pause to allow the user to say something |
Salt and Pepper Scallops.

[followed by a slight pause to allow the user to say something |
These are the Duck Dishes. Peking Duck.

One.

Fried Duck with Plum Sauce.

Finish.

Now I will read back your order. Say wrong if you disagree. One San
Chow Bow with Pork.

Ifollowed by a slight pause to allow the user to say something/ |
One Mixed Entree.

_Ifollowed by a slight pause to allow the user to say something |
One Salt and Pepper Pork Chops.

[Ifollowed by a slight pause to allow the user to say something/ |
One Peking Duck.

Wrong.

How many portions do you want?

Two.

Would you like to add anything?

Yes.

Do you know what you want to add?

Yes.

Give me the items in the form number of portions and then the name of
the dish.

One Fried Duck with Plum Sauce.

Do you want to reconfirm your order?

No.

OK, your order comes to [127.40. It will be ready for you to pick up in
30 minutes.

As can be seen, the implementation can give rise to widely different dialogues.
5.2.2 Using VoiceDBC to Write the Dialogue

Appendix II contains the tutorial that is shipped with VoiceDBC and which covers the
writing of the Restaurant Take-away Menu Application, so we will not go through every
step here, but will concentrate on some of the more interesting aspects. The first three
forms, (I use the word for to refer to a single graphical user interface within the series of
these which constitute the wizard) of the wizard allow one to name the project, to set up
any opening and closing remarks, to choose the basic dialogue design pattern from a

48

template browser, and to specify paths to the cgi-bin, and the database that will be used.
VoiceDBC then contacts the database, obtaining its contents and displays the form at
Figure 19.

-Ioi x|

Review the Data Generally

YoiceDBC is displaying the fieldz which make up the table pou specified, You have
to chooge datatypes for them, Click on &Analyze to do thiz. The label will change to
Vizited when you return to thiz farm,

First yau musk provide natural language expreszions for each field The database
figld names are showrin the first colum and the default ML references in the data
entry bokes in the 2econd clalumn, Overtype any vau wizh to change,

primary_key Iprimar_l,l_ke_l,l Add Words Analyze =
CoLrEes Iu:u:uurses Add Words Analyze
dizhes Idishes Add Words Analyze
deszcriptions Idescriptiuns Add Words Analyze
price Ipriu:e Add Words Analyze EJ
I -]
s | Back N e;.;t> ool |

Figure 19 — Review the Data Generally Form from the New Project Wizard

This shows the name by which the field is referred to in the database, and offers the
name back as a default lexicalisation. We can overtype the default lexicalisation and
VoiceDBC will use the new description in the application. We then analyse each field in
turn. We will only look at courses and price, and see how to lexicalise or transform a string
or characterise a field as a currency, for future use in the application. If we click on
Analyse on the course line, the form shown at Figure 20 is displayed. This allows us to
view the data, (and in this case it is in a fairy natural language form). If it were not for
the fact that we wish to see how the lexicalisation, and transformation screens work, we
might just select String, and Map Directly, but we will select String, and Lexicalise
instead, and click on Next.

As can be see, at Figure 21, the new screen that is displayed affords us the opportunity to
enter a lexical reference for each unique string item in the database. Of course, in this
case nothing needs to be done but, whatever is left appearing in the white box when we
leave this form, is remembered for future use when converting database tokens into
specifications of speech output by VoiceDBC.

49

Review 'courses'

Review the data and decide on which datatupe bau wish to Lze "Jn:nin::eDE!E has four
datatypes: strings, numbers, cunency and termpaoral. Stings can be mapped directly
frar the database, lesicalized or ransformed.

Selecta LIz anly for
Duck 2 datatype strings
Prawns : '
B art B * Sting ™ Transfom
Soup £ Mumber & Lexicalise
sharter

e i:imenc_l,l " Map Directly

T Temporal

< |+

HElp | <Bal:k- | N E:':t:}.i I:ar":e| |

Figure 20 — The Review ‘courses’ Form from the New Project Wizard — above

Figure 21 — The Lexicalise ‘courses’ Form from the New Project Wizard - below
FEINew Project Wizard i = IEI_IE[

. Lexicalise 'courses'

“ou should lexicalize each of the database tokens. The form uzed in the databaze iz
shiowr i the first colurnn, The defualt which the spstern will use b referta the item is
zhown in the entrp box, 1F pou wizh to change it simply overtype, 1F pou wigh to allow
users bo add additional words that the application will recognize use Add Words,

Duck {Duck Add Words i
Pravins |F'rawns Add W ards
S alt and Pepper |Salt and Pepper Add Words
Soup |5|:|up Add Words
starter |starter Add W ards

Help | < Back

50

MHest > | Cancel |

Transform 'courses’

& Mew Project Wizard

ou should enter a Perl pattern uzsing the $1. $2 notation which will tranform the data
item to the form pou desire. vou can test it by clicking Test,

Duack, et
Frawnz

Salt and Pepper

Soup

starter

1 |+

Capturing Fattern |['\w"]

Tranformation Pattern |$1 dizhes

Test |

riginal |Du|:k

Tranzfarmation IDuu:k dizhes

Help |

< Back | Mext » Cancel

Figure 22 — The Transform ‘courses’ Form from the New Project Wigard — above

Figure 23 — The Review ‘price’ Form the New project Wizard

Review "price’

Review the data and decide on which datatype tou wish to Lze, ;'quiu:eDElE has four
datatypes: strings, numbers, currenc and temporal. Stings can be mapped directy
from the database; lexicalized or transformed.

Selecta Lize only for
10.2000 =} datatype shings
11.8000 ;
12 5000 " Shing £ Transform
15.0000 " Mumber € Lexicalize
15,5000 _
163000 & Cimency € Map Directly
16,5000 _
18,5000 € Temporal
360000 T
4.0000
4.2000 .
< |+

HElp | < Bal:k\- | N EHt}\, Eanl:e|

51

If we want to handle this mapping from the database to the speech application
differently, we can use transformation. To add the word ‘dishes’ to every course prior to
sending the data off, we select Transform on the Review form, and the screen shown at
Figure 22 is displayed.

As can be seen, I have entered a Perl pattern in the box titled ‘Capture Pattern’, and a
further one in the box titled “Transformation Pattern’. This data is then used in a Perl
substitute function that can be tested by clicking on Test. If we leave this as the
transformation, any data item that appears in this field in the database will always have
dishes added after it as it passes through the part of the code that handles the mappings.

The last data handling we look at is the currency one. The screen is show at Figure 23,
and it can be seen that the first item in the list shows as 10.5000. We know it is a
currency item, and this view reveals that inside Access numbers are stored as floating
point numbers (to four decimal places). If we select Currency, the figure will be
transformed to [110.50 upon transfer to our speech application, and can be rendered to
speech by a text-to-speech module, normally as ‘ten dollars fifty cents’.

The only thing that is left to do is to decide which parts of the database should be
offered to the user, what descriptions should be provided to any clarification question,
and how grouping should take place. If we click Next twice we see Figure 24.

NEW Project Wizard 3

Choose the Data To Be Offered

Pick the field to be included in initial system utterances concerning the data, & field [if
any] which containg addibional descriptive matter concerning the data and a figld to
group the data bu,

- - 4
Initial field | Desciptivefield | Goupingfield |

 primany_key " primany key primary key

" courses O courses * courses

% dizhes O dizhes T dishes

" descriptions * descriptions {™ descriptions

" price | € prce ™ price ||

1 el | v 4 | »]
HElI:I | < Back | .’ N EHt}l‘l Cancel |

Figure 24 — The Choose the Data To Be Oftered Forw from the New Project Wizard

The choices in this case are quite logical, and, with two more clicks on Next, Voice DBC
write all the code required for the application. The documents are offered to the
developer as is shown in Figure 25 . This task has been completed within minutes and it
may well take longer to deploy the documents to the Voice XML Gateway and the cgi-bin

52

(and change the permissions on the files) than actually write the application is the first
place.

FE YoiceDBC o =8|

File Edit Wiew Tools Help

Praject Manager Offer_and select wxml | all_item=s.grm b=in e ml Lagin.w=ml | Logaout weml |
B arm
Speech Editor
Lall_items.grm H
pl <txml wersionm = "1.0"1x
e =wxml wersion = "z 0" application = "Main. wviml"
Mainwxml
Lagin.w=ml
Logout il <form=
=hlock=
I—Dﬁer and_selact.wxml S ; i : ;
- - Tour order will be ready for picking up
=/block=
=/ form=
= wrxml =

po—

Figure 25 — The final documents being displayed by 1 0iceDBC.
5.3 The Catalogue Sales Application

The Restanrant Take-away Menn Application was used as the basis for a catalogue sales
application. This uses a database that contains information on electrical goods. The
finished application can be found on the accompanying CD. With changes mainly from
dish to item, and course to groups, the templates made the transitions with little problems.
The application can be reviewed by clicking File [I/L] Open [Ixisting Project, and then
selecting catalogue sales and clicking Open. The individual text files can be opened
simply by double clicking on the file name in the Project Manager.

5.4 Conclusions

In this chapter we have looked at VoiceDBC and at one particular application, The
Restanrant Take-away Menn Application, in some considerable detail. Further detail is
contained in Appendix 11, which contains the full tutorial that is shipped with VoiceDBC.
We then briefly touched upon The Catalogue Sales Application, which can be reviewed more
fully off the CD. In the next chapter, we will conclude this thesis.

53

Chapter 6 — Conclusions

6.1 Outcomes

When I started this project some eight months ago, I specified in the project proposal
that the aims were:

“This project aims to remedy the deficiency in current VoiceXML tools by:

* Collecting and collating a specification for good dialogue practice.

* Identifying relevant characteristic dialogue phenomena and producing algorithms and
strategies to handle them.

Using this knowledge it then aims to specify, design and implement an integrated development
environment — called VoiceDBC - which will also support easy database connectivity.”

These objectives have been achieved. As Chapter 2 shows, I have collected, and collated a
large body of literature, and applications relevant to the subject. I did not go onto write a
formal specification for good dialogue practice; with work around like Balentine and
Morgan [1999], to do so would have been prolix. VoiceDBC has been produced, and
writes speech applications. In addition it handles database connectivity. The outcomes
of research are always (indeed should always be) unpredictable. The work on dialogue
design patterns was an unexpected, and interesting bonus to this work.

Of course, there is still much that can be achieved with VoiceDBC. In addition to the
usual developer’s to-do list, mainly involved with house-keeping matters, like making
sure that buttons are disabled when they should be and that boxes that should not accept
text do not, some ten significant items on completing the work on incorporating good
dialogue practice, and dialogue phenomena are listed in Section 6.6 below. In addition, a
number of other areas, some directly concerned with VoiceDBC, like completing the
work on templates, and some concerned with speech application tools that might come
after, like a canvas based tool for task-oriented dialogues with a short dialogue-task
distance, are also considered below.

6.2 Dialogue Design Patterns

The idea of dialogue design patterns was one of the most interesting ones that emerged
from this project. I choose to use the bottom up approach to learn more about them.
From that experience it is possible to conclude that many dialogue designs patterns are
re-usable. Indeed, some components of task-oriented dialogues with a long task-dialogue
distance turned out to be so standard, such as a greeting and a farewell, they could be re-
use across all our dialogues. Of course, the approach taken can give rise to maintenance
issues. Amendments in one template may have to be reflected in others, and if one had
30 or 40 templates, this could become a large task. Given the potential for this approach
to simplify the writing of dialogues, it is clearly worthwhile to undertake the top down
work considered at Section 3.2.3, and produce a more robust approach to catching and
implementing dialogue design patterns.

54

6.3 A Visual Front [1nd for VoiceDBC

I was intrigued by the idea of a highly visual front end to VoiceDBC that would allow the
developer to work at a high level of abstraction. The point here does not involve good
dialogue practice, but has to do with the way these tools allow us to think at a higher
level, and manage the important aspects of the dialogue - the states and transitions —
without getting bogged down in code. The work done by Kolzer [1999] gives a clear
direction forward, and to bring to that, what has been learned about good dialogue
practice, and to develop techniques to support compliance procedures, would constitute
a fascinating piece of work. Perl modules do contain graphical user interface objects
such as ‘canvas’, which appear quite capable of handling this type of interface. Such an
interface is unnecessary given the use of dialogue design patterns, but would be
interesting to enable work on dialogues with a shorter task-dialogue distance.

6.4 [Ixpanding the Library of Templates

The taxonomy contained some of the many dialogue design patterns that might be worth
capturing. This is an area that will empower VoiceDBC and allow it to satisfy a growing
demand for good cheap speech application. Even if the top down work is never done it
will still be worthwhile implementing simpler dialogues using VoiceDBC so that the
work involved in capturing their patterns can become available for future use.

6.5 Implementing Database Connections to Other DBMS[s

VoiceDBC currently only has connectivity with the Microsoft’s Access Database.
However, it uses the Per]l DBI modules that are designed for easy access with all the
major databases. It would be most useful to implement connectivity with mySQL (which
is proving a very popular free DBMS for both Windows and Linux platforms) and for
ORACLE with its massive market presence.

6.6 Completing the Work on Incorporating Good Dialogue Practice and
Dialogue Phenomena

There were ten items flagged under these headings in Chaprer 4. These are:

* Production of a checklist for compliance with good dialogue practice suitable for use
when writing task-oriented dialogues with a long dialogue-task distance. — Sectzon 4.4.1

* Completion of the work on tapering prompts and the various other system responses
based upon the number of times they are repeated. — Section 4.4.4

* Production of a style guide. — Section 4.4.7
* Input by spelling (including a fall back to the keypad). — Section 4.5.2

* Discriminating between expert lnovice users involving the maintenance of an
application specific database. — Section 4.6.2

* Incorporating a general repeat function — Section 4.6.3

* Incorporation of a form writing module into VoiceDBC. — Sectzon 4.6.3
* Inclusion of a sleep mode, and a slower rate of speaking. — Section 4.6.4
* Creation of a one-anaphora management module. — Section 4.6.10

* A general application wide undol redo faciltiy. — Section 4.6.13

55

6. Conclusions

One day the speech recognition problem will be solved, and, when that happens, the
problems of understanding language will become the main focus when creating speech
applications. In the meantime, it is much more important to build robust speech
applications that deliver what they can truly promise. Tools such as VoiceDBC, which
can semi-automatically produce speech applications that are robust, will play their part in
ensuring that the promise of this field is realised.

It is true that the range of speech applications that VoiceDBC can produce is currently
limited. However, if the work is done to expand the range of templates, VoiceDBC can
cover most of the field from travel booking to pizza ordering, taxi booking to sales
fulfillment, news, weather, and timetables information to immigration facts. Moreover, it
will allow speech applications that conform to good dialogue practice to be built quickly
by anyone willing to follow the tutorial.

56

References

Abbott K R. (2002). Voice Enabling Web Application |1 0ice XML and Beyond pages 87 to
103. Springer-Verlag, New York.

Alexander C. (1977). A pattern langnaged | Towns, Buildings, Constructions. Oxford University
Press.

Alexander C. (1979). The Timeless Way. Oxford University Press.

Andersson E A, Breitenbach S, Burd T, Chidambaram N, Houle P, Newsome D, Tang X
and [hu X. (2001). Early Adopter VVoiceXML, pages 113 to 133. Wrox Press,
Birmingham, England.

Androutsopoulos I, Ritchie G D, Thanisch P. (1994). Natural. Langnage Interfaces to
Databases — An Introduction, Research Paper 709. Department of Artificial
Intelligence, University of Edinburgh, Scotland.

Balentine B and Morgan D P. (1999). Uow 2 Build a Speech Recognition Application.
Enterprise Integration Group, San Ramon, California.

Barto A G, Bradtke S J and Singh S P. (1995). Learning to act using real-time dynanic
programming. Artificial Intelligence Journal, 72 (1-2), pages 81 — 138.

Beasley R, Farley M, O’Reilly] and Squire L. (2002). oze Application Development with
Voice XML, pages 49 to 110. Sams Publishing, Indianapolis.

Bellman R E. (1957). Dynamic Programming. Princeton University Press, Princeton, N.J.

Bernsen N O, Dybkjaer H, Dybkjaer L. (1998). Designing Interactive Speech Applications —
From First 1deas to User Testing. Springer Verlag.

Buskirk RV and Lalomia M. (1995). The Just Noticeable Difference of Speech
Recognition Accuracy. in proceedings of ACM (11 195 (Poster), page 95.

Dahlback N. (1997). Towards A Dialogue Taxonomy. Department of Computing and
Information Science, Linkoping University, Sweden

Dale R and Reiter E. (1996). The Role of the Gricean Maxims in the Generation of
Referring Expressions. Pages 16-20 in Working Notes for the AAAI Spring Symposinm
on Computational. Implicaturd | Computational. Approaches to Interpreting and Generating
Conversational. Implicature, Stanford, March 25-27.

DISC. (1999,2000). http! Lwww.disc2.dk accessed various times during 2002.

Edgar B. (2001). The Voice XML [andbook — Understanding and the Building Phone-Enabled
Web. CMP Books, New York.

ETSI DESLHF-00021 v 0.0.40. (2002). U wman Factors | Under Interfaces| Generic spoken
command vocabulary for ICT devices and services.
http! Tportal.etsi.org HFLSTFsLISTEF182.asp accessed in May 2002.

Eisenzopf J. (2002). Top 10 Best Practices for Voice User Interface Design. in
V oiceXMI_Planet, Lune 2002,
http! Liwww.voicexmlplanet.comllarticles_bestpractices.html.

Flammia G. (1998). Discourse Segmentation of Spoken Dialogné | An Empirical Approach. Ph.D
Thesis, MIT.

57

Frankish C, Hull R, and Morgan P. (1995). Recognition Accuracy and User Acceptance
of Pen Interfaces. In Proceedings of ACM U1 195 pages 503 — 510.

Fraser N. (1997). Assessment of interactive systems, pages 564 to 615 in Gibbon D,
Moore R and Winski R, (ed) LI andbook of Standards and Resources for Spoken Langnage
Systems. Mouton de Gruyter, New York.

Gamma E, Helm R, Vlissides] and Jones R. (1994). Design Patterns. Addison-Wesley,
N.Y.

Glass] R. (1999). Challenges for Spoken Dialogue Systems. Spoken Language Systems Group,
MIT Laboratory for Computer Science, http: [www.sls.Ics.mit.edu, accessed May
2002.

Grand M. (1998). Pattern in Lavd \V olume 1 — A catalogue of reusable Design Patterns Illustrated
with UML. John Wiley L] Sons, Inc, N.Y.

Grice H P. (1975). Logic and Conversations, In Cole P and Morgan |, (ed), Syntax and
Semantics: Vol .3, Speech Acts, pages 43 — 58. Academic Press, New York.

Guelich S, Gundavavaram S and Birznieks G. (2000). CGI Programming with Perl. O’Reilly,
CA.

Hild H and Waibel A. (1996). Recognition of Spelled Names Over The Telephone. Interactive
Systems Laboratories, University of Karlsruhe, Germany and Carnegie Mellon
University, Pittsburg, U.S.A..

Hobbs JR. (1978). Resolving Pronoun References. Lingua, 44, 311-338.

Hood D. (2001). Spoken Dialog Systems.
http: T www.ics.mq.edu.au’ Il dhood.systems.html. Accessed 27 October 2002

Hulstijn J. (2000). Modeling Usability) Development Methods for Dialogue Systems. Computer
Science, University of Twente.

Kennedy C and Bogoraev B. (1996a). Anaphora in a wider context: Tracking discourse
referents. In Proceedings of the 12" European Conference on Artificial. Intelligence, pp582-
586, August 11-16, Hungary.

Kennedy C and Bogoraev B. (1996b). Anaphora for everyone: Pronominal anaphora
resolution without a parser. In Proceedings of the 16" International. Conference on
Computational. Linguistics, Copenhagen, Denmark.

Keeney R and Raiffa H. (19706). Decisions with Multiple Objectives | Preferences and 1 alue
Tradeoffs. John Wiley and Sons.

Kolzer A. (1999). Universal Dialogue Specification for Conversational Systems.
Linkoping Electronic Articles in Computer and Information Science, 170/ 41999 nr 28.
http: L www.ep.liu.sel leal cis 1199911028 December 30, 1999.

Lappin S and Leass H J. (1994). An Algorithm for Pronominal Anaphora Resolution.
Computational. Linguistics, Volume 20, Part 4, pages 535-561.

Mankoft | and Abowd G D. (1999). Error Correction Techni_ues for] andwriting, Speech and
other ambignous or error prone systems. GVU Center and College of Computing,
Georgia Institute of Technology,
http! [iwww.cc.gatech.edul fcel Jpublications interact99l index.html.

58

McKinlay A, Arnott J, Procter R, Masting O and Woodburn R. (1993). A Study Of Turn-
Taking In A Computer-Supported Group Task. Dept. of Maths. and Computer Science,
Dundee University, Scotland.

Mittendorfer M, Niklfeld G, Winiwarter W. (2001). Evaluation of Intelligent Component
Technologies for 1 oice XML _Application., Software Competence Centre, Hagenberg.

Norton L. M, Weir C E, Scholz K W, Dahl D A and Bouzid A. (1996). A methodology
for Application Development for Spoken Language Systems. In Proceedings, Fourth
International. Conference on Spoken Language Processing.

Ohrstrom-Sandgren T, Weibe J, O’Hara T and McKever K. (1997). Temporal. Resolution
Algorithm. Department of Computer Science and the Computing Research
Laboratory, New Mexico State University, U.S.A.

Ramakrishnan N, Capra R and Perez-Quinones. (2001). Mixed-Initiative Interaction) Mixed
Computation. Department of Computer Science, Virginia tech, Blacksburg, Virginia,
US.A.

Russell S and Norvig P. (1989). Artificial Intelligencé LA Modern Approach. Prentice Hall, N.J.

Sharma C and Kunins J. (2002). VoiceXMILL|Strategies and Techni_nes for Effective 1 oice
Application Development with 1 0iceXMIL. 2.0. Pages 329 to 373, John Wiley [! Sons,
Inc., New York.

Somerville 1. (1989). Software Engineering., Addison-Wesley Publishing Co, N.Y.

Stone M. (2000). Towards A Computational Account of \nowledge, Action and Inference in
Instructions. Department of Computer Science and Center for Cognitive Science,
Rutgers, State University of New Jersey, U.S.A.

Sutton R S. (1991). Planning by incremental dynamic programming. In Proc. Ninth Conf.
On Machine learning, pages 353 — 357, Morgan-Kaufmann.

TRINDI. (2001). http: ['www.ling.su.sel projekt trindi, accessed May 2002.

Rosenfeld R, Olsen D and Rudnicky A. (2001). Universal Speech Interfaces, in
Lnteractions, November | December 2001,
http:_ Llcie.cs.byu.edu Papers_ UniversalSpeech.pdf accessed May 2002.

Walker M A, Fromer | C and Narayanan S. (1998). Learning Optimal Dialogue Strategies:
A Case Study of a Spoken Dialogue Agent for Email. In proceedings of
ACILICOLINGYS.

Yankelovich N, Levow G and Marx M. (1995). Designing SpeechActs: Issues in Speech
User Interfaces. In Proceedings of (1 195 Conference on) uman Factors in Computing
Systems, Denver.

Weibe], Farwell D, Villa D, Chen J L, Sinclaire R, Ohrstrom-Sandgred T, Stein G,
Uarazua D and O’Hara T. (1996). ARTWORK: Discourse processing in machine
translation of dialog, Final technical report (37 year) MCCS-96-294 (Computing
Research Lab), NMSU.

Weibe J, Farwell D, O’Hara T, McKeever K and Ohrstrom-Sandgred T. (1997). An
Empirical Approach to Temporal Reference Resolution. In Proceedings Second
Conference on Empirical Methods in Natural Ianguage Processing.

59

Weibe | M, O’hara T P, Ohrstrom-Sandgren T and McKeever K J. (1998). An
Empirical Approach to Temporal Reference Resolution. In Lourmnal. of Artificial.
Intelligence Research (9), pages 247-293.

Lajicek M and Hewitt . (1990). An Investigation into the use of Error recovery
Dialogues in a User Interface Management System for Speech Recognition. In
Proceedings of IFIP INTERACII90 pages 755-760.

Uoltan-Ford E. (1991). How to Get People to Say and Type What Computers Can
Understand. International _ournal of Man-Machine Studies 34(4), pages 527-547.

60

Appendix I
CODIAL: the guidelines for cooperative dialogue

Guidelines for cooperative dialogue

The two tables below show the 13 generic guidelines (GG) and 11 specific guidelines (SG) for
cooperative human-machine dialogue interaction. The generic guidelines are expressed at the
same level of generality as are the Gricean maxims (marked with an [) [Grice 1975]. Each
specific guideline is subsumed by a generic guideline. The left-hand column characterises the
aspect of interaction addressed by each guideline.

The guidelines in the tables represent a first approximation to an operational definition of system
cooperativity in task-oriented, shared-goal interaction. Their purpose is that of achieving the
shared goal as directly and smoothly as possible. It is exactly when a guideline is violated that
miscommunication is likely to occur, which again may seriously damage the user's task
performance. Roughly speaking the generic guidelines express what to take into account while
the specific guidelines explain how to do it. Since all specific guidelines are subsumed by generic
guidelines the user might decide only to use the generic guidelines. This would mean a more
coarse-grained and overall characterisation of cooperativity issues but it would also mean fewer
guidelines to remember and to apply.

Generic
Aspect Guidelin [Paraphrase
e

GGl | Make your contribution as informative as is required (for the current

[nformativene purposes of the exchange).

ss (aspect 1)

GG2 | Do not make your contribution more informative than is required.
Truth and GG3 | Do not say what you believe to be false.
evidence : .
GG4 | Do not say that for which you lack adequate evidence.
(aspect 2)
Relevance | Be relevant, i.e. be appropriate to the immediate needs at each stage
GG5 .
(aspect 3) of the transaction.
GGO6 | Avoid obscurity of expression.
Manner GG7 | Avoid ambiguity.

(aspect 4) GG8 | Be brief (avoid unnecessary prolixity).

GGI | Be orderly.

Partner Inform the users of important non-normal characteristics which they
asymmetry |GG10 [should take into account in order to behave cooperatively in spoken
(aspect 5) interaction. Ensure the feasibility of what is required of them.

Background |GG11 [Take partners relevant background knowledge into account.

Knowledge Take into account legitimate partner expectations as to your own

(aspect 6) CG12 background knowledge.

Meta-

communicatio GG13 Enable repair or clarification meta-communication in case of
n communication failure.

(aspect 7)

61

Aspect IZIL ifll(gfne Paraphrase
. SG1 (GG1) Be fully explicit in communicating to users the
Informativeness commitments they have made.
(aspect 1) SG2 (GG1) Erovide feedback on each piece of information provided
y the user.
Manner Provide same formulation of the same question (or
SG3 (GG7) faddress) to users everywhere in the systemls interaction
(aspect 4)
turns.
SG4 Provide clear and comprehensible communication of
Partner asymmetry (GG10) what the system can and cannot do.
(aspect 5) SG5 Provide clear and sufficient instructions to users on how
(GG10) to interact with the system.
SG6 Take into account possible (and possibly erroneous) user
(GG11) inferences by analogy from related task domains.
Background Knowledge |SG7 Separate whenever possible between the needs of novice
(aspect 06) (GG11) and expert users (user-adaptive interaction.
?GG (Ei, 12) Provide sufficient task domain knowledge and inference.
SG9 Initiate repair meta-communication if system
(GG13) understanding has failed.
Meta-communication SG10 Initiate clarification meta-communication in case of
(aspect 7) (GG13) inconsistent user input.
SG11 Initiate clarification meta-communication in case of
(GG13) ambiguous user input.

62

Appendix II — The VoiceDBC Tutorial

VoiceDBCls Tutorial

Welcome to VoiceDBC. It is rare to find simple solutions to complex problems and
VoiceDBC (like other powerful development environments) cannot be understood
simply by opening it and clicking on a few buttons. It is essential that the user undertakes
the tutorials that accompany any of these application to discover how they work.

The Restaurant Take-Away Menu Problem

Producing a speech application which can successfully offer the contents of standard
chinese restaurant’s menu is quite challenging. This tutorial will take you through the
production of such an application. In order to carry out the tutorial you must have
Microsoft Access on your computer and you must use the database restaurant.wdb which
is shipped with VoiceDBC in the directory sample/ databases

Getting Started

Open VoiceDBC by clicking on its icon or typing petl VoiceDBC.pl at the command line
in the directory VoiceDBC. You should see the following screen:

___1 =101 %]
| Trmls Hiln
Welcome K|

Welcome to VoiceDBC Help |

Welcome to YWoiceDBL. You can create’a new speech application
b clicking Mew, open an existing application b clicking Existing or
Cloze thiz dialog b

IF pouwizh b gtop YoiceD B apening with thiz dialog bo just: click
on the chieck box below! - ou can abways reqinztate it by editing the
Lzer sethings.

[Chieck if yous do nat wish to see this apening dislog box again

Mew

| E sizting |

Click on /7 ew

Specifying Information

63

_|of =

Welcome to the New Project Wizard

Uizing this Wizard you can create new speech applications.
For contest senziive help click Help,

Tao cantinue click Mext:

e | m— Neﬂb —

Click on // ext. Although VoiceDBC will take care of the general framework of your

application your must enter key utterances and parameters. First you must enter a name
for your project.

Beo project wizard 1ol x]

Mame Your Project

Y'ou have to choose & name for yn_ur'-prcuieu_:t.ﬁ 1t will be: used'rjnl_l,g for identification:
purposes by VoicellBE s0 pick something simple buk descriptive: A fight scheduler
rright be named ‘aust fight scheduler & take away service 'take away

Application M arme: !take away

Help | ¢ Back - Hew> | Cancel

Although VoiceDBC will take care of the general framework of your application you
must enter key utterances and parameters. First, you must enter a name for your project.
The dialogue box above has already been completed and you should enter the
information as shown. Then click // ext.

NEW Project Wizard

Create Your Opening and Closing Messages

Y'ou zan enter an opening greeting. Unlesz pou check the box below, WoiceDBC waill
automatically apen with 'Good Morming A& fternoon or Evening’ ag appropriate but you
zah add another or an additional meszage in the boxs below, &g, “Welcome toJos
Fizza Place’ or "Welzome to the Central Banks Account Information Service’. ou
cah alzo enter a clozing mezsage e.q. 'Have a nice dap.’ or "our delivens will take 30
minutes,'

[Check to suprezs Good [ime of day].

Enter ah opening greeting: lWeIcnme ta the Blizz Chinese Restaurant

Enter a closing meszage; lYu:uur order will be ready for picking up in 30 minukes

HE'I:I | ¢ Back -’ N EHt}l Cancel

Next, you must specify the opening and closing words for the dialogue. VoiceDBC will
say [Good Morning br [Good Afternoon as appropriate (unless you check the box to
suppress it) but you must add the message to go after those words and a closing message.
The dialogue box above has been completed and you should enter the information as
shown. Then click // ext

Choosing a Dialogue Design Pattern

VoiceDBC is based upon the premise that task-oriented dialogues with a large dialogue-
task distance are amenable to being modelled by design patterns. If you are interested in
pursuing the theoretical aspects you are referred to Stephen Choularton's thesis -
VoiceDBC: A semi-automatic tool for writing speech applications.

VoiceDBC contains a (growing) number of these design patterns. You can always update
by visiting www.bymouth.com and downloading the updates. You must choose one
appropriate to the domain of your application. In this case click on

traditional restaurant pick’ up to select it.

65

Click on /J ext

New Project Wizard =: E z e

Choose a Template

i B locat d i =
You should brawsee oEEle_mnE_rewview

the template tree plane_ti metable
until yous find a

amail
template that has the g
comect i:ligh:lgLJIE offer_and_select
design pattem far I—lraditinnal_restaurard:_pit koup
- yoLr-application. | I |
Select it by clicking ket e

an .

4 |+

CGI and Database Information

Your voice application will undoubtedly require to pass information to a cgi-bin. This
may be on your own computer (as it is in the screen-shot) or on a remote computer
when it would be characterised as [http: I lsome_computerl cgi-binJsome_filel.

In addition, it will require a path to the database (in the dialogue box the path is to the
sample of databases shipped with VoiceDBC and is
[C:\VoiceDBC_V1\sample_databases\take_away_pick_up.mdbl) and the name of the
table that the application will deal with. The dialogue box below shows a typical setup for
a cgi-bin and database on the same computer.

66

CGl and Database Information

[1_] Eniter the-path to the-cgibin inta which o will place your cgj code.

Fath ba polr cgi-bin ihttp:a".-"lac:alhn:nsta"c:gi-him'
(2] Enter the path to your database:

Diatabase Path CAWoiceDBC W1hsample databazes'lake away

(3] Enter the: name of the table yau wish b wark with;

Table's Mame blizz

Help | < Back Mext > | Cancel |

The Data in the Database

NEW Project Wizard E = |EI| Ei

Review the Data Generally

WoiceDBC iz displaying the fislds which make up the table you spei:i'i‘ied.: “Yau have
to choose datatppes for them. Elick ondnalyse o dothiz. The label will chiange to
Yigited when pou retur bo this fn:grm':

First pou must provide natural language expressions for each fisld. The databaze
field names are shown in the first calumn and the default ML references in the data
entry bowes in the second clolume: Dvertype any wou wish to change:

primarny._keu Ipril‘ﬂar_','_ke_'.-' &dd Words finalyze =

Ccourzes Il:l:uurses &dd Ywfords dinalyze

dizhes Idishes &dd Ywfords dinalyze

dezcriptions Idescriptinns &dd Ywfords dinalyze

price ||:|ri|:e &dd Ywfords Sinalyze =
L)

VoiceDBC offers you the various fields in the database. First you should lexicalise the
name by which the database refers to the field. In this case most of them are quite natural

67

but it would not be unusual to see the departure city in a flight scheduler called from_city
as a field in the database. If they require amendment simply over type the existing
reference in the white box with the lexical reference you wish to use. VoiceDBC defaults
to the field description used in the database (that is the one first shown in this dialogue
box) if you do not.

In addition to how one refers to the field you also have to decide how to refer to the data
contained in the fields. You have to look at (click on Analyse) each one and decide what
to do. If you do nothing VoiceDBC will default to simply passing on the data item from
the database in the form it originally appears. A token like bri (which might be short for
Brisbane) will be passed on with the text-to-speech module to make of it what it can. In
the tutorials case many of the data items come from a restaurant menu and do not
require transformation but one certainly does. Let’s look at [pricel.]

Handling the Data

NEW Project Wizard

Review 'price’

Fiewiew the data and decide on which datatype vou wish to uze. VoiceDEC has four
datatypes: stings, humbers: currenicy-and termporal. Stings can be mapped dirscty
from the database, lexicalized or tranzformed.

Select a |lze anly for
10.8000 ket datatipi shrings
::122333 ™ Sting ™ Transform
15.0000 £ Mumber: € Lesicalize
15.5000
16,3000 € Cumency ¢ Map Directly
16.5000
18,5000 " Tempaoral
360000 o
4.0000
4.2000 _v_l

4] [»]

Help | < Back | N e:-:t> Cancel

Click on Analyse on the price line.

The actual data in the field is deduped and displayed in the text box. You should scroll
down and across as required in order to get a feel for the data. VoiceDBC does not rely
on any of the proprietary data types used on the different platforms to retain platform
independence. All data coming out of a database is expected to be converted to a form
suitable for immediate natural language rendering. This is further enhanced through
ECMAScript functions. The data you are looking for should be selected as currency and
will be rendered in any speech application and 10.800 would be changed to [110.80. Click
on Currency and click // ext.

68

When you revert to the Initial Data Analysis Form the label on the button by [pricel has
changed to “Visited’. Have a look at the other datafields by clicking on Analyse.
VoiceDBC will default to the form passed by the database but in this case the database
entries are in a natural form and do not require further processing.

Click on // ext.

Data to be Offered by the Application

NEW Project Wizard

Choose the Data To Be Offered

Fick the field to be included incinitial #pstem utterances concerning the data, a field [if
any] which containg additional dascriptive matter concerning the dats and 2 fisld to
group the data b

& L =
Iriitial field Diescriptive figld Grouping field
i primary_key £ ‘primary_key 1 primary key
 courses 7 courses * courses
% dizhes 0 dishies 7 dighes
g deseriptions g dexcriﬁtinns " descriptions
™ price 1) 'l“ price: Il i price L.

4| | +'] 4| | » 4| | rj_‘
Help | < Back | N ew-:t> “ Cancel |

With this type of application the system has to work through a fairly large amount of
data. You must choose the focus of the delivery of that data, what additional information
should be provided if the user asks for it and how the data should be [¢chunked 5o that
the user can skip to a more relevant centre. In the above form dishes, descriptions and
courses have been selected for these purposes.

69

Complete the Application
Click on // ext.

_EEEEN Projeckt Wizard

You have completed the Wizard

70

Then click on Finish.

B grm
Ll tems grm
pl

Once VoiceDBC has written the various documents required for the application the
Project Manager will open displaying the various documents written. Any one can be
reviewed by double clicking on the file name. The screen shot below shows all of the
documents opened in this way.

71

E& voiceDBC Il -(of x|

File Edft ¥iew Tools Help

Projsct Manager all iterms.grm: -M_aiq'.v;é'ml' Login waxml gp@b_m.vx-m1 _Dﬁer_anx_:l_seléqt.w‘g-rﬂ

B arm . ,
Speech Editar Save

|—Elll_ite ms.grm

pl return currency.replacelexpr, '
B wxml

b

P=in vzl

Lagin.wsml function nTolurrency (mamber) =2 |
Logaout vl return '$' + number;

------- e e e !

Offer_and_select Al

function cTofSpeech (currency | |
war numher = cToMumber (currency) ;
wvar dollars cents = new Array;
dollars cents = number_ split{'.'}
wvar dollars = dollars cents([0];
war cents = dollars cents[1l];
war dExpr = ' dollars';
if {dollars == 1) {dExpr = ' doll
war cExpr = ' cents';
if f{cents == 1) {cExpr = ' cent';
if f(cents == undefined) |

return dollars + dExpr +

}

aelse |

. : G gk g ﬂ

Finally the user can review all the system utterance by clicking Speech [/ ditor which will

work through any system utterances and allow the user to change them if they wish to do
sO.

@Speech Editor 1 - o x :

Use this tool to edit the speech content of aform

Fleaze edit the test below and click save to confirm pour amendmentz, GO KNOT edit
tags [eg <prompl:]. “Wher pou close this form you must click Save on the Text
E ditar o permariently- zasve pour amendments

<prompt >

Do ywou kwnow what you want to order?

Help | Make Changes Mests s Cloze

You can edit the text that is displayed and click Make Changes if you want to save them.
Once you close this form you must also click on Save on the main text editor to save the
text file to disk and make the changes permanent.

Deployment

You have to place the VoiceXML (and grammar) documents in the appropriate
directories of the voice browser you are using and the Perl scripts into the cgi-bin.

73

74

